Первым делом заметим, что на тело на всём протяжении полёта действует единственное ускорение - g, направленное всегда вниз. Величину g примем по-школьному g = 10 м/с2. Других ускорений нет, т.к. больше нет сил, кроме силы тяжести. Следовательно, задача сводится к разложению ускорения g на составляющие, для чего необходимо как-то узнать радиус кривизны траектории в указанной точке. Давай для начала выпишем скорости в проекциях:Vx = V * cos(a) = 30 * корень(3) / 2 = 15 * корень(3) = 25,98 м/с - горизонтальная скорость не меняется на всём протяжении полёта. Vy = Vy0 - g*t = V * sin(a) - g*t = 30 * 0,5 - gt = 15 - 10*t м/с - вертикальная скорость меняется в течение полёта. Теперь выпишем уравнение движения. Мне как-то привычнее использовать параметрическую форму, так проще.x = Vx * t = 25,98 * t y = Vy0 * t - g*t^2 / 2 = 15t - 5t^2 = (если угодно, то 5t*(3-t))По ходу, видим, что тело упадёт на землю (то есть у обнулится) при t=3 c, следовательно в интересующий нас момент времени t=1c тело ещё не долетело до высшей точки траектории. И тут мы приходим на развилку. Если бы эта задача была задана у нас, то я не знаю как находить радиус кривизны, мы этого ещё не проходили. Поэтому запилил бы программу, которая посчитала бы мне две касательные к траектории в точках чуть-чуть левее и чуть-чуть правее t=1c, например, с дельтой 0,001 с, посчитал бы их нормали, нашёл точку пересечения нормалей, и так узнал бы радиус кривизны. Но мы с тобой пойдём другим путём - налево, потому что есть ощущение, что задачка из углублёнки, следовательно можно применить грязный хак из математики. Хак заключается в том, что существует алгебраическая формула для кривизны в точке. Назовём этот параметр буквой К. Формула такая: К = |x' * y'' - y' * x'' | / [ (x')^2 + (y')^2 ] ^ (3/2). Тут присутствуют первая и вторая производные. Что ж, выпишем их: x = 25,98 * tx' = 25,98x'' = 0 y = 15t - 5t^2y' = 15 - 10ty'' = -10 Подставим значения этих производных при t=1 в магическую формулу, и получается так:К = | 25,98 * (-10) - (-5) * 0 | / [ 25,98^2 + (-5)^2 ] ^ 1,5 = 0,0140285 1/м Лучше проверь вычисления за мной, с калькулятором я не очень дружу. Если всё верно, то радиус кривизны R = 1 / K. R = 1 / 0,0140285 = 71,28346 м Самое хитрое позади. Для определения центростремительного (видимо, это у тебя имеется в виду под словом "нормальное") ускорения нам нужно узнать скорость в точке t=1 с. Нет ничего проще, уравнения скорости у нас имеются.Vx = 25,98 м/сVy = 15 - 10 = 5 м/сV = корень ( Vx^2 + Vy^2 ) = 26,4575 м/с а_норм = V^2 / R = 26,4575 ^ 2 / 71,28346 = 9,82 м/с2 Осталось последнее движение: определить а_танг как векторную разницу между g и только что найденным а_норм. Используем то обстоятельство, что нормальное и тангенциальное ускорения имеют между собой прямой угол, следовательно а_танг = корень( g^2 - а_норм^2) = корень(100 - 9,82^2) = 1,89 м/с2
Yurok9872
01.08.2022
1. А 2. С 3. 3*1,6*10^-19=4,8*10^-19 Дж (Д) 4. А 5. В 6. В 7. А 8. С 9. Д 10. Е0р = mpc2 mp = 1,6*10-27 кг. c = 3*10^8 м/с E0p=1,6*10^27 кг * (3*10^8 м/c)^2=(1,44 × 10^44)/(1,6*10^-19)=900МеВ (В)
1.В 2.А 3. 1 а.е.м= 0,166*10^-26 кг 2 а.е.м=0,332*10^-27 кг (Д) 4. С 5. А, С 6. С 7. С 8. А 9. Д 10. Дано t1 = 26 лет t2 = 52 года N = 10^9 атомов = 100 * 10^7 атомов определим количество распадов n = t2 / t1 n = 52/26 = 2 то есть вещество испытает 2 полураспад было 100 * 10^7 атомов через 26 лет осталась половина 50 * 10^7 атомов еще через 26 лет осталось 25 * 10^7 атомов Теперь считаем сколько распалось 100 * 10^7 - 25 * 10^7 = 75 * 10^7 атомов =7,5 * 10^8 атомов В последнем задании вроде опечатка в ответах, так что... Скорее всего ответ тут будет (В).
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Уі радіолампи об'ємом 10-м знаходиться 4, 1 • 104 молекул азоту.визначіть середню квадратичну швидкість руху молекул газу, якщо тиск улампі 13, 3 мпа
Давай для начала выпишем скорости в проекциях:Vx = V * cos(a) = 30 * корень(3) / 2 = 15 * корень(3) = 25,98 м/с - горизонтальная скорость не меняется на всём протяжении полёта.
Vy = Vy0 - g*t = V * sin(a) - g*t = 30 * 0,5 - gt = 15 - 10*t м/с - вертикальная скорость меняется в течение полёта.
Теперь выпишем уравнение движения. Мне как-то привычнее использовать параметрическую форму, так проще.x = Vx * t = 25,98 * t y = Vy0 * t - g*t^2 / 2 = 15t - 5t^2 = (если угодно, то 5t*(3-t))По ходу, видим, что тело упадёт на землю (то есть у обнулится) при t=3 c, следовательно в интересующий нас момент времени t=1c тело ещё не долетело до высшей точки траектории.
И тут мы приходим на развилку. Если бы эта задача была задана у нас, то я не знаю как находить радиус кривизны, мы этого ещё не проходили. Поэтому запилил бы программу, которая посчитала бы мне две касательные к траектории в точках чуть-чуть левее и чуть-чуть правее t=1c, например, с дельтой 0,001 с, посчитал бы их нормали, нашёл точку пересечения нормалей, и так узнал бы радиус кривизны. Но мы с тобой пойдём другим путём - налево, потому что есть ощущение, что задачка из углублёнки, следовательно можно применить грязный хак из математики. Хак заключается в том, что существует алгебраическая формула для кривизны в точке. Назовём этот параметр буквой К. Формула такая:
К = |x' * y'' - y' * x'' | / [ (x')^2 + (y')^2 ] ^ (3/2).
Тут присутствуют первая и вторая производные. Что ж, выпишем их:
x = 25,98 * tx' = 25,98x'' = 0
y = 15t - 5t^2y' = 15 - 10ty'' = -10
Подставим значения этих производных при t=1 в магическую формулу, и получается так:К = | 25,98 * (-10) - (-5) * 0 | / [ 25,98^2 + (-5)^2 ] ^ 1,5 = 0,0140285 1/м
Лучше проверь вычисления за мной, с калькулятором я не очень дружу. Если всё верно, то радиус кривизны R = 1 / K.
R = 1 / 0,0140285 = 71,28346 м
Самое хитрое позади. Для определения центростремительного (видимо, это у тебя имеется в виду под словом "нормальное") ускорения нам нужно узнать скорость в точке t=1 с. Нет ничего проще, уравнения скорости у нас имеются.Vx = 25,98 м/сVy = 15 - 10 = 5 м/сV = корень ( Vx^2 + Vy^2 ) = 26,4575 м/с
а_норм = V^2 / R = 26,4575 ^ 2 / 71,28346 = 9,82 м/с2
Осталось последнее движение: определить а_танг как векторную разницу между g и только что найденным а_норм. Используем то обстоятельство, что нормальное и тангенциальное ускорения имеют между собой прямой угол, следовательно
а_танг = корень( g^2 - а_норм^2) = корень(100 - 9,82^2) = 1,89 м/с2