Найти потенциал шара радиуса R = 0,1 м, если на расстоянии r=10м от его поверхности потенциал электрического поля 
Поле вне шара совпадает с полем точечного заряда, равною заряду q шара и помещенного в его центре. Поэтому потенциал в точке, находящейся на расстоянии R + r от центра шара, jr= kq/(R + r); отсюда q = (R + r)jr/k. Потенциал на поверхности шара

2 N одинаковых шарообразных капелек ртути одноименно заряжены до одного и того же потенциала j. Каков будет потенциал Ф большой капли ртути, получившейся в результате слияния этих капель?
Пусть заряд и радиус каждой капельки ртути равны q и r. Тогда ее потенциал j = kq/r. Заряд большой капли Q = Nq, и если ее радиус равен R, то ее потенциал Ф = kQ/R = kNq/R = Njr/R. Объемы маленькой и большой капель  и  связаны между собой соотношением V=Nu. Следовательно,  и потенциал

3 В центре металлической сферы радиуса R = 1 м, несущей положительный заряд Q=10нКл, находится маленький шарик с положительным или отрицательным зарядом |q| = 20 нКл. Найти потенциал j электрического поля в точке, находящейся на расстоянии r=10R от центра сферы.
В результате электростатической индукции на внешней и внутренней поверхностях сферы появятся равные по модулю, но противоположные по знаку заряды (см. задачу 25 и рис. 332). Вне сферы потенциалы электрических полей, создаваемых этими зарядами, в любой точке равны по модулю и противоположны по знаку. Поэтому потенциал суммарного поля индуцированных зарядов равен нулю. Таким образом, остаются лишь поля, создаваемые вне сферы зарядом BQ на ее поверхности и зарядом шарика q. Потенциал первого поля в точке удаленной от центра сферы на расстояние r, , а потенциал второго поля в той же точке . Полный потенциал . При q=+20нКл j=27В; при q=-20нКл j=-9В.
Объяснение:
Микроскоп - это оптический прибор, позволяющий получить обратное изображение изучаемого объекта и рассмотреть мелкие детали его строения, размеры которых лежат за пределами разрешающей глаза.
Разрешающая микроскопа дает раздельное изображение двух близких друг другу линий. Невооруженный человеческий глаз имеет разрешающую около 1/10 мм или 100 мкм. Лучший световой микроскоп примерно в 500 раз улучшает возможность человеческого глаза, т. е. его разрешающая составляет около 0,2 мкм или 200 нм.
Разрешающая и увеличение не одно и тоже. Если с светового микроскопа получить фотографии двух линий, расположенных на расстоянии менее 0,2 мкм, то, как бы не увеличивать изображение, линии будут сливаться в одну. Можно получить большое увеличение, но не улучшить его разрешение.
Различают полезное и бесполезное увеличения. Под полезным понимают такое увеличение наблюдаемого объекта, при котором можно выявить новые детали его строения. Бесполезное - это увеличение, при котором, увеличивая объект в сотни и более раз, нельзя обнаружить новых деталей строения. Например, если изображение, полученное с микроскопа (полезное!), увеличить еще во много раз, спроецировав его на экран, то новые, более тонкие детали строения при этом не выявятся, а лишь соответственно увеличатся размеры имеющихся структур.
В учебных лабораториях обычно используют световые микроскопы, на которых микропрепараты рассматриваются с использованием естественного или искусственного света. Наиболее распространены световые биологические микроскопы: БИОЛАМ, МИКМЕД, МБР (микроскоп биологический рабочий), МБИ (микроскоп биологический исследовательский) и МБС (микроскоп биологический стереоскопический). Они дают увеличение в пределах от 56 до 1350 раз. Стереомикроскоп (МБС) обеспечивает подлинно объемное восприятие микрообъекта и увеличивает от 3,5 до 88 раз.
В микроскопе выделяют две системы: оптическую и механическую (рис. 1). К оптической системе относят объективы, окуляры и осветительное устройство (конденсор с диафрагмой и светофильтром, зеркало или электроосветитель).
Поделитесь своими знаниями, ответьте на вопрос:
Реферат на тему "історія створення наноматеріалів"
У 1985 році Роберт Керл, Харольд Крото, Річард Смоллі відкрили новий клас сполук – фулерени (Нобелівська премія 1996 рік).
У 1988 році незалежно один від одного французький та німецький вчені Альбер Ферт і Петер Грюнберг відкрили ефект гігантського магнітоопору (ГМО) (у 2007 р. присуджено Нобелівську премію з фізики), після чого магнітні наноплівки і нанодроти почали використовуватися для створення пристроїв магнітного запису. Відкриття ГМО стало основою для розвитку спінтроніки. З 1997 року компанія IBM у промислових масштабах почала виготовляти спінтронні прилади - голівки для зчитування магнітної інформації на основі ГМО розмірами 10-100 нм.
1991 рік ознаменувався відкриттям вуглецевих нанотрубок японським дослідником Суміо Іїджимою.
У 1998 році було вперше створено транзистор на основі нанотрубок Сізом Деккером (голландський фізик). А у 2004 році він з’єднав вуглецеву нанотрубку із ДНК, уперше отримавши єдиний наномеханізм, відкривши дорогу розвитку біонанотехнологіям.
2004 рік - відкриття графену, за дослідження його влас- тивостей А. К. Гейму та К. С. Новосьолову у 2010 р. присуджена Нобелівська премія з фізики. Відомі фірми IBM, Samsung фінансують наукові проекти з метою розроблення нових електронних пристроїв, що змогли б замінити кремнієві технології.