Дано:
C1 = 50 пФ = 50*10^(-12) Ф
С2 = 500 пФ = 500*10^(-12) Ф
L = 2 мкГн = 2*10^(-6) Гн
с = 3*10⁸ м/с
λ1, λ2 - ?
T = 2pi/w - период
w = 1/√(LC) - собственная частота контура
λ = с*T = (2pi*c)/w = 2pi*c*√(LC) - длина волны
При увеличении ёмкости С собственная частота контура будет уменьшаться, следовательно, будет увеличиваться длина волны. Найдём длины волн для минимального и максимального значений ёмкости:
λ1 = (2pi*c)/w1 = 2pi*c*√(LC1) = 2*3,14*3*10⁸*√(2*10^(-6)*50*10^(-12)) = 6,28*3*10⁸*10^(-3)*10^(-6)*10 = 6,28*3 = 18,84 м = 19 м
λ2 = (2pi*c)/w2 = 2pi*c*√(LC2) = 2*3,14*3*10⁸*√(2*10^(-6)*500*10^(-12)) = 6,28*3*10⁸*10^(-3)*10^(-6)*√1000 = 18,84*√1000*10^(-1) = 1,884*√1000 = 59,577... = 60 м
Можно было решить и по-другому. Ёмкость С2 больше ёмкости С1 в
500 пФ : 50 пФ = 10 раз, значит собственная частота контура w2 < w1 в √10 раз. А так как длина волны обратно пропорциональна собственной частоте контура:
λ ~ 1/w, то
длина волны λ2 больше длины волны λ1 в √10 раз.
λ2 = 19*√10 = 60 м
Диапазон длин волн будет от 19 м до 60 м.
ответ: от 19 до 60 м.
Поделитесь своими знаниями, ответьте на вопрос:
ФИЗИКА Точечный источник света освещает непрозрачный диск радиусом 118 мм. Расстояние от источника до диска в 3, 4 раз(-а) меньше, чем расстояние от диска до экрана, на котором наблюдатель видит тень. Чему равен диаметр от тени диска, и во сколько раз площадь тени больше площади диска?ответ (округли до десятых): диаметр тени равен см;площадь тени в раз(-а) больше площади диска.
Объяснение:
Ускорение свободного падения на поверхности планеты найдем по
формуле
-
,
где 6,67 ∙ 10 Н·м2
/кг2
– универсальная гравитационная
постоянная, M – масса планеты, R – радиус планеты.
Радиус планеты задан, произведение можно выразить из
формулы для первой космической скорости:
,
где – радиус орбиты спутника; отсюда искомое произведение –
.
Подставим в выражение для вычисления -
:
-
.
Расчет позволяет получить значение ускорения свободного падения на
поверхности планеты:
-
12 ∙ 10
∙ 2 ∙ 10
12 ∙ 10
20 м/с
.