fedoseevalyubov
?>

до кінця метрового стержня масою 8кг підвішені вантажі маси яких 30 кг і 12 кг.де треба підперти стержень, щоб він знаходився у рівноваз

Физика

Ответы

Kushchenko-Monashev
М1=8кг
м2= 30кг
м3=12кг
F1=8*10=80
F2= 30*10=300
F3= 12*10= 120
F1*x= F2*(l-x)+F3*(l/2-x)
80*x=300*(1-x)+120*(0,20-x)
80*x= 300- 300*x+24-120*x
500x=324
x= 324/500= 0,648м
0,648м= 64,8см
zakaz6354
Воспользуемся законом сохранения импульса. до прыжка соломинка и кузнечик находились в покое относительно земли, следовательно, результирующий импульс этой системы равнялся нулю. в соответствии с законом сохранения импульса он не может измениться после прыжка. если скорость соломинки после прыжка равна u, скорость кузнечика задана относительно земли, а угол, который она образует с поверхностью земли, равен , то закон сохранения импульса в проекции на горизонтальное направление дает . (1.3.5) очевидно, что за время полета кузнечика общее перемещение его и соломинки должно равняться длине соломинки l, следовательно, . (1.3.6) чтобы исключить из (1.3.7) время, воспользуемся тем, что время подъема кузнечика до верхней точки траектории равно половине времени полета. так как в верхней точке вертикальная скорость обращается в ноль, находим . (1.3.7) подставляя (1.3.7) в (1.3.6), получаем , что с учетом (1.3.5) дает . таким образом, для скорости кузнечика получаем выражение . очевидно, скорость будет минимальной, если . тогда окончательно .
yulyazhdan

Молекулы газа при своем движении постоянно сталкиваются. Скорость каждой молекулы при столкновении изменяется. Она может возрастать и убывать. Однако среднеквадратичная скорость остается неизменной. Это объясняется тем, что в газе, находящемся при определенной температуре, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется определенному статистическому закону. Скорость отдельной молекулы с течением времени может меняться, однако доля молекул со скоростями в некотором интервале скоростей остается неизменной.

Нельзя ставить вопрос: сколько молекул обладает определенной скоростью. Дело в том, что, хоть число молекул очень велико в любом даже малом объеме, но количество значений скорости сколь угодно велико (как чисел в последовательном ряде), и может случиться, что ни одна молекула не обладает заданной скоростью.

 
Рис. 3.3

Задачу о распределении молекул по скоростям следует сформулировать следующим образом. Пусть в единице объема nмолекул. Какая доля молекул  имеет скорости от v1 до v1 + Δv? Это статистическая задача.

Основываясь на опыте Штерна, можно ожидать, что наибольшее число молекул будут иметь какую-то среднюю скорость, а доля быстрых и медленных молекул не очень велика. Необходимые измерения показали, что доля молекул , отнесенная к интервалу скорости Δv, т.е. , имеет вид, показанный на рис. 3.3. Максвелл в 1859 г. теоретически на основании теории вероятности определил эту функцию. С тех пор она называется функцией распределения молекул по скоростям или законом Максвелла.


Аналитически она выражается формулой

,где m – масса молекулы, k – постоянная Больцмана.

Установление этой зависимости позволило определить кроме уже известной среднеквадратичной скорости еще две характерные скорости – среднюю и наиболее вероятную. Средняя скорость – это сумма скоростей всех молекул, деленная на общее число всех молекул в единице объема.

Средняя скорость, подсчитанная на основании закона Максвелла, выражается формулой

или.Наиболее вероятная скорость – это скорость, вблизи которой на единичный интервал скоростей приходится наибольшее число молекул. Она рассчитывается по формуле:.Сопоставляя все три скорости:

1) наиболее вероятную ,

2) среднюю ,

3) среднюю квадратичную , – видим, что наименьшей из них является наиболее вероятная, а наибольшей – средняя квадратичная. Относительное число быстрых и медленных молекул мало (рис. 3.4).

 
Рис. 3.4

При изменении температуры газа будут изменяться скорости движения всех молекул, а, следовательно, и наиболее вероятная скорость. Поэтому максимум кривой будет смещаться вправо при повышении температуры и влево при понижении температуры. Высота максимума не будет оставаться постоянной. Дело в том, что площадь заштрихованной фигуры численно равна доле  общего числа молекул n, которую образуют молекулы со скоростями в указанном интервале. Общая площадь, ограниченная кривой распределения и осью абсцисс (скоростей), таким образом, равна единице и не меняется при изменении температуры (рис. 3.5). Поэтому высота максимума и меняется при изменении температуры.



 
Рис. 3.5

Кривые распределения молекул по скоростям начинаются в начале координат, асимптотически приближаются к оси абсцисс при бесконечно больших скоростях. Слева от максимума кривые идут круче, чем справа. То, что кривая распределения начинается в начале координат, означает, что неподвижных молекул в газе нет. Из того, что кривая асимптотически приближается к оси абсцисс при бесконечно больших скоростях, следует, что молекул с очень большими скоростями мало. Это легко объяснимо. Для того чтобы молекула могла приобрести при столкновениях очень большую скорость, ей необходимо получить подряд много таких столкновений, при которых она получает энергию, и ни одного столкновения, при котором она ее теряет. А такая ситуация маловероятна.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

до кінця метрового стержня масою 8кг підвішені вантажі маси яких 30 кг і 12 кг.де треба підперти стержень, щоб він знаходився у рівноваз
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Golubitskaya378
volodin-alexander
Дмитрий1974
gostivdom302
Yuliya Aleksandr282
natalia595977
chetverikovalex3738
cat2572066
Akvamontaz
vusokaya13
ekater01806
mishink535
sbarichev330
yrgenson2011801
armentamada1906