Пройдя разность потенциалов 2 кВ, электрон влетает в однородное магнитное поле с индукцией 150 мкТл и движется по окружности радиусом 1 м. Определите по этим данным отношение заряда электрона к его массе.
Дано:
Δφ = 2 кВ = 2 000 В
B = 150 мкТл = 150·10⁻⁶ Тл
R = 1 м
____________________
e/m - ?
Работа электрического поля:
A = e·Δφ (1)
Кинетическая энергия электрона:
Eк = m·V²/2 (2)
Ларморовский радиус:
R = m·V / (e·B) (3)
Из (3) находим скорость электрона в магнитном поле:
V = e·B·R / m (4)
Подставляем (4) в (2):
Eк = m·V²/2 = m·e²·B²·R² / (2·m²) =
= e²·B²·R² / (2·m) (5)
Приравняем (5) и (1)
e²·B²·R² / (2·m) = e·Δφ
e·B²·R² / (2·m) = Δφ
(e/m) = 2·Δφ / (B²·R²)
e/m = 2·2000 / (150·10⁻⁶)² = 1,78·10¹¹ Кл/кг
Замечание. Иногда полезно заглянуть в справочник. Задачу мы решили верно!
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
1.Составить схему однополупериодного выпрямителя для питания потребителя с Р0=100 Вт и U0=40 В. Выбрать один из трёх диодов: Д209, Д303, Д7Г.
Объяснение:
Пройдя разность потенциалов 2 кВ, электрон влетает в однородное магнитное поле с индукцией 150 мкТл и движется по окружности радиусом 1 м. Определите по этим данным отношение заряда электрона к его массе.
Дано:
Δφ = 2 кВ = 2 000 В
B = 150 мкТл = 150·10⁻⁶ Тл
R = 1 м
____________________
e/m - ?
Работа электрического поля:
A = e·Δφ (1)
Кинетическая энергия электрона:
Eк = m·V²/2 (2)
Ларморовский радиус:
R = m·V / (e·B) (3)
Из (3) находим скорость электрона в магнитном поле:
V = e·B·R / m (4)
Подставляем (4) в (2):
Eк = m·V²/2 = m·e²·B²·R² / (2·m²) =
= e²·B²·R² / (2·m) (5)
Приравняем (5) и (1)
e²·B²·R² / (2·m) = e·Δφ
e·B²·R² / (2·m) = Δφ
(e/m) = 2·Δφ / (B²·R²)
e/m = 2·2000 / (150·10⁻⁶)² = 1,78·10¹¹ Кл/кг
Замечание. Иногда полезно заглянуть в справочник. Задачу мы решили верно!