ответ: Нанофотоника
Нанофотоника- нанооптика (англ. nanophotonics) — раздел фотоники, занимающийся изучением физических явлений, возникающих при взаимодействии фотонов с объектами нанометровых размеров, и практическим применением указанных явлений.
Нанофотоника - область фотоники, связанная с разработкой архитектур и технологий производства наноструктурированных устройств генерации, усиления, модуляции, передачи и детектирования электромагнитного излучения и приборов на основе таких устройств, а также с изучением физических явлений, определяющих функционирование наноструктурированных устройств и протекающих при взаимодействии фотонов с наноразмерными объектами.
Цели и материалы/устройства нанофотоники.
Цель нанофотоники - разработка материалов, имеющих нанометровые размеры (1-100 нм.) с новейшими оптическими свойствами и создание на их основе фотонных устройств. В настоящее время нанофотоника рассматривается как альтернатива современной электроники. Использование фотонов при передаче и обработки информации позволит добиться существенных преимуществ, благодаря высокому быстродействию и устойчивости фотонных каналов связи к помехам. К нанофотонным устройствам относятся устройства, использующие структуры размерами 100 нм и менее. Такие устройства решают проблемы миниатюризации многих оптических систем. Нанофотонные устройства не только значительно превосходят электронные аналоги, но и позволяют успешно решать проблемы, связанные с тепловыделением и электропитанием. Слабым местом и источником постоянного беспокойства при использовании приборов на основе нанофотоники остается обеспечение надежности электрооптических переключателей, позволяющие преобразовывать электрические сигналы в оптические и наоборот.
Объяснение:
Дело в том, что дальние электроны (те, которые находятся на самых удалённых от ядра орбитах) довольно слабо связаны с ядром. Поэтому они могут довольно легко переходить от одного атома к другому. Такое беспорядочное движение электронов чем-то напоминает электронный газ. Если внутри металла нет электрического поля, то движение этих свободных электронов чем-то напоминает движение поднятого в воздух роя мошкары в летний день (Рис. 3).
Рис. 3. Движение электронов внутри металлического проводника (Источник)
3 Движение электронов в металлах после появления электрического поля
Всё изменяется, когда внутри металла появляется электрическое поле. Электрическое поле заставляет двигаться заряженные частицы. Ядра атомов остаются на месте, а вот электроны начинают упорядоченно двигаться.
4. Электрический ток в металлах
Электроны, перескакивая от одного атома к другому, движутся в том направлении, куда им указывает электрическое поле. Это движение и называется электрическим током в металлах.
Мы знаем, что электрический ток – это направленное, упорядоченное движение заряженных частиц. В металлах в роли движущихся заряженных частиц выступают электроны. В других веществах это могут быть ионы или ионы и электроны.
Движение заряженных частиц (в металлах – электронов) происходит очень медленно (доли миллиметров в секунду). Возникает вопрос: почему же, когда мы нажимаем на выключатель, лампочка загорается практически мгновенно?
Дело в том, что внутри проводников с огромной скоростью (со скоростью света – приблизительно 300 000 километров в секунду) распространяется электрическое поле.
При замыкании цепи поле распространяется практически мгновенно. А уже вслед за полем начинают медленно двигаться электроны, причём сразу по всей цепи. Эту ситуацию можно сравнить с движением воды в водопроводе. Воду заставляет двигаться давление в трубах, которое при открытии крана распространяется практически мгновенно, заставляя «ближайшую» к крану воду выливаться. При этом по трубам движется вся вода под этим самым давлением. Получается, что давление – это аналог электрического поля, а вода – аналог электронов. Как только прекращается действие электрического поля, сразу прекращается упорядоченное движение электрических зарядов.
Поделитесь своими знаниями, ответьте на вопрос:
Фокусное расстояние собирающей линзы равно 15см.на каком расстоянии от линзы находится предмет, действительное изображение которого получено на расстоянии 20 см линзы? ответ выразите в сантиметрах .
1/f=1/f+1/d f=0.15 м f=0.2 м
d=f*f/(f-f)=0,6 м=60 см