Получилось, что в плоскости γ через точку А к прямой b проведены две различные параллельные прямые а и с, что противоречит аксиоме. Значит предположение неверно и c пересекает β.
Объяснение:
Допустим плоскости α и β параллельны, а прямая с пересекает плоскость α в точке А.
Предположим, что эта прямая не пересекается с плоскостью β. Возьмем в плоскости β точку В и проведем плоскость γ через прямую с и точку В. Плоскость γ пересекается с плоскостями α и β по параллельным прямым а и b (теорема 17.6). Но по предположению, прямая с параллельна плоскости β, а поэтому прямая с параллельна и прямой b (теорема, обратная теореме 17.3).
1, равенство двум сторонам и углу между ними, треугольники ACB и ADB, AB - общая сторона, углы ABC и ABD равны по условию, стороны CB и DB равны по условию;
2, треугольники MNK и MPK равны по двум сторонам и углу, MK - общая, углы NMK и MKP равны, MN и KP стороны равны, а вообще это параллелограмм, там противоположные стороны и углы все равны;
8, равны по трём сторонам треугольники ABC и ADC, тут очевидно какие стороны равны;
7, MNE и NMF треугольники равны, общая сторона MN, равные углы M и N, ME и NF стороны равны.
Это не точно
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике абс ас=10. ад и се - медианы ад= 9 се= 12. найти площадь треугольника абс