1-Б
2-Д
3-В
4-А
Объяснение:
Площадь прямоугольного треугольника равна половине произведения двух катетов. (Формула S=1/2*a*b)
Будем принимать значение с- гипотенуза; а- катет; b- катет.
1)
с=5см гипотенуза (самая большая сторона в прямоугольном треугольнике)
b=3cм.
Найдем второй катет по теореме Пифагора
а=√(с²-b²)=√(5²-3²)=√(25-9)=√16=4см
S=1/2*a*b=1/2*4*3=6см²
ответ: 6см²
2)
с=13см гипотенуза
b=5см катет
Теорема Пифагора
а=√(с²-b²)=√(13²-5²)=√(169-25)=√144=12см
S=1/2*a*b=1/2*12*5=30см²
ответ: 30см²
3)
с=10см
b=8см
Теорема Пифагора
а=√(с²-b²)=√(10²-8²)=√(100-64)=√36=6см
S=1/2*a*b=1/2*6*8=24см²
ответ: 24см²
4)
с=25см
b=7см
Теорема Пифагора
а=√(25²-7²)=√(625-49)=√576=24см
S=1/2*24*7=84см²
ответ: 84см²
Основные сведения
1. Геометрическое место точек (сокращенно ГМТ), обладающих некоторым свойством,- это фигура, состоящая из всех точек, для которых выполнено это свойство.
2. Решение задачи на поиск ГМТ должно содержать доказательство того, что
а) точки, обладающие требуемым свойством, принадлежат фигуре F, являющейся ответом задачи;
б) все точки фигуры F обладают требуемым свойством.
3. ГМТ, обладающих двумя свойствами, является пересечением (т. е. общей частью) двух фигур: ГМТ, обладающих первым свойством, и ГМТ, обладающих вторым свойством.
4. Три важнейших ГМТ:
а) ГМТ, равноудаленных от точек A и B, является серединным перпендикуляром к отрезку AB;
б) ГМТ, удаленных на расстояние R от данной точки O, является окружностью радиуса R с центром O;
в) ГМТ, из которых данный отрезок AB виден под данным углом, является объединением двух дуг окружностей, симметричных относительно прямой AB (точки A и B не принадлежат ГМТ).
Поделитесь своими знаниями, ответьте на вопрос:
Впаралелограмме abcd найдите 1) стороны если bc на 8 см больше стороны ab а периметр равен 64 см 2) углы если угол a равен 38 градусов