Дано:
∆АВС
∠О = 90°
АВ = ВС
АВ = 15,2 см
ВО = 7,6 см
Найти.
∠А; ∠В; ∠С.
Решение.
∆АВО и ∆СВО - прямоугольные (∠О = 90°)
Если катет равен половине гипотенузы, то напротив лежащий угол равен 30°.
=> ∠А = 30°
Т.к. АВ = ВС => ∆АВС - равнобедренный.
=> ∠С = ∠А = 30°
Сумма углов треугольника равна 180°
=> ∠В = 180 -(30 + 30) = 120°
Или можно было найти ∠В таким образом:
Сумма углов прямоугольного треугольника равна 90°
=> ∠АВО = ∠СВО = 90 - 30 = 60° (если ∆АВС - равнобедренный, то BO является и медианой, и высотой, и биссектрисой.)
Также, если угол одного треугольника, равен углу другого треугольника, то последующие углы этих треугольников будут равны, так как сумма углов треугольника равна 180°
Т.к. BD - биссектриса => ∠В = 60 + 60 = 120°
ответ: 120°; 30°; 30°.
Объяснение:
Все грани прямоугольного параллелепипеда - прямоугольники.
ΔА₁АС: ∠A₁AC = 90°
sinβ = AA₁ / A₁C, ⇒ AA₁ = A₁C · sinβ,
AA₁ = a · sinβ
cosβ = AC / A₁C, ⇒ AC = A₁C · cosβ,
AC = a · cosβ.
Точка пересечения диагоналей прямоугольника является центром описанной окружности. Тогда для окружности, описанной около прямоугольника ABCD ∠АОВ - центральный, а ∠ACB - вписанный, опирающийся на ту же дугу, значит
∠АCB = 1/2 ∠AOB = α/2.
ΔABC: ∠ABC = 90°
sin∠ACB = AB / AC, ⇒ AB = AC · sin∠ACB,
AB = a · cosβ · sin(α/2),
cos∠ACB = BC / AC, ⇒ BC = AC · cos∠ACB,
BC = a · cosβ · cos(α/2).
Sбок = Pосн · AA₁
Sбок = (AB + BC) · 2 · AA₁
Sбок = (a · cosβ · sin(α/2) + a · cosβ · cos(α/2)) · 2 · a · sinβ =
= a · cosβ(sin(α/2) + cos(α/2)) · 2 · a · sinβ =
= 2a²sinβ·cosβ(sin(α/2) + cos(α/2)) =
= a²sin2β (sin(α/2) + cos(α/2))
Поделитесь своими знаниями, ответьте на вопрос: