Внутри правильного треугольника со стороной √3 выбрана произвольная точка . Чему равна сумма расстояний от этой точки до сторон треугольника ?
Объяснение:
Пусть точка Р-произвольная. Опустим на стороны правильного ΔАВС перпендикуляры . Обозначим их х,у,z ( кстати, получили педальный треугольник, если соединить основания перпендикуляров).
S(ABC)=S( PAB)+S(PBC)+S(PAC).
S(ABC)=S(равн. тр)= = ,
S( PAB)=1/2*a*h=1/2*√3*x,
S(PBC)=1/2*a*h=1/2*√3*y,
S(PAC)=1/2*a*h=1/2*√3*z.
=1/2*√3*x+1/2*√3*y+1/2*√3*z.
=1/2√3(x+y+z)
x+y+z=1,5
В основе прямой призмы лежит равнобедренная трапеция с основаниями 4см и 10 см и боковой стороной 5 см. Боковое ребро призмы равно 10 см. Вычислите полную поверхность призмы.
Объяснение:
В прямой призме боковое ребро перпендикулярно площади основания.
S( полной)=S(боковой)+2S(основания);
S(боковой)=Р(основания)*h, где h-ребро боковое призмы;
S(основания)=S(трапеции)=1/2*(а+в)*h ,где h-высота трапеции
S(боковой)=(4+10+2*5)*10=240 (см²).
АВСД-равнобедренная трапеция АВ=СД=5 см ; пусть ВН⊥АД, СК⊥АД ⇒ АН=(10-4):2=3 (см)
ΔАВН-прямоугольный , по т. Пифагора ВН=√(5²-3²)=4 (см).
S(трапеции)=1/2*(4+10)*4=28(см²)
S( полной)=240+2*28=296(см²)
Поделитесь своими знаниями, ответьте на вопрос:
Смежные стороны прямоугольника равны 6 см и 8 см. чему равны его диагонали?