vikka30
?>

Найдите отношение высот bn и am равнобедренного треугольника abc , в котором угол при основании bc равен альфа.

Геометрия

Ответы

d892644813661946

ам=смtgα

вn=bcsinα

вс=2см

bn/am=bcsinα/(cmtgα)=2см*sinα/(cmsinα/cosα)=2cosα

X2755070

Я не знаю ¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯¯\_(ツ)_/¯┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌┐( ∵ )┌

alenchik19938823
Пусть р - точка касания вписанной окружности с боковой стороной ас, е - точка касания с основанием. тогда ар=5х, рс=8х. так как отрезки касательных, проведенных к окружности из одной точки равны, то ае=5х. используя теорему пифагора для треугольника асе, получим х=2, тогда ас=26, ав=20, площадь треугольника авс равна 240.  окружности, касающиеся одной из сторон треугольника и продолжений двух других, называются вневписанными. таких окружностей три (они изображены на прилагаемом рисунке).  существуют формулы, выражающие радиусы вневписанных окружностей через стороны треугольника и его площадь, а именно: радиус `r_a` вневписанной окружности, касающейся стороны `a` и продолжений сторон `b` и `c`, равен `r_a=2s/(b+c-a) =s/(p-a)` (p- полупериметр)  соответственно радиус `r_b` вневписанной окружности, касающейся стороны `b` и продолжений сторон `a` и `c`, равен `r_a=2s/(a+c-b) =s/(p-b)`, а радиус `r_c` вневписанной окружности, касающейся стороны `c` и продолжений сторон `a` и `b`, равен `r_a=2s/(a+b-c) =s/(p-c)`  тогда радиусы вневписанных окружностей для данного треугольника равны  `r_1=r_2=480/(26+20-26)=24`  `r_3=480/(26+26-20)=15`  ответ: 24,24,15  upd  доказательство вышеупомянутой формулы для окружности, касающейся стороны ас и продолжений сторон ав и вс. пусть радиус этой окружности `r_1`  `s_(abc)=s_(bao_1)+s_(bco_1)-s_(aco_1)=(1/2)*(r_1*ab+r_1*bc-r_1*ac)`.  откуда `r_1=(2s)/(ab+bc-ac)`, где `s` - площадь треугольника авс

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите отношение высот bn и am равнобедренного треугольника abc , в котором угол при основании bc равен альфа.
Ваше имя (никнейм)*
Email*
Комментарий*