Диагонали ромба ABCD пересекаются в точке О. Найдите углы треугольника AOB если угол BCD равен 70 градусов
ответ или решение1
Петухова Виктория
Дано:
ромб ABCD,
АС и ВD — диагонали,
АС пересекается с ВD в точке О,
угол BCD = 70 градусов.
Найти градусные меры углов треугольника АОВ, то есть угол АОВ, угол ОВА, угол ВАО — ?
Рассмотрим ромб АВСD. По признаку диагонали ромба пересекаются под прямым углом. Тогда треугольник АОВ является прямоугольным. По свойству ромба, диагонали делят углы ромба пополам. Зная, что сумма градусных мер углов ромба равна 360 градусам. Получим:
угол В = углу D = 360 - (угол А + угол С) : 2 = 360 - (70 + 70) = 360 - 140 = 110 градусов.
Тогда
угол АВО = 110 : 2 = 55 (градусов);
углу ВАО = 70 : 2 = 35 градусов.
ответ: 90 градусов; 55 градусов; 35 градусов.
Объяснение:
Вот
Поделитесь своими знаниями, ответьте на вопрос:
Дана треугольная пирамида авсд и точки pqrt являющиеся серединами сторон ав вс сд ад соответственно .найдите модули векторов pq qr rt если ас =8 см вд=6 см
а) Пусть угол В равен х градусов, тогда угол А равен х/4 градусов (если в ... раз меньше, то надо разделить), а угол С равен (х - 90) градусов (если на ... меньше, то надо вычесть). Сумма углов треугольника равна (х + х/4 + (х - 90)) градусов или 180° ( по теореме о сумме углов треугольника). Составим уравнение и решим его.
х + х/4 + (х - 90) = 180;
х + 0,25х + х - 90 = 180;
2,25х - 90 = 180;
2,25х = 180 + 90;
2,25х = 270;
х = 270 : 2,25;
х = 120° - угол В;
х/4 = 120°/4 = 30° - угол А;
х - 90 = 120° - 90° = 30°.
ответ. ∠A = 30°; ∠B = 120°; ∠C = 30°.
б) Если в треугольнике два угла равны, то этот треугольник будет равнобедренным. Угол В равен 120°. Напротив этого угла лежит сторона АС, которая будет основанием. Две другие стороны треугольника АВ и ВС будут боковыми сторонами. Боковые стороны равнобедренного треугольника равны.
ответ. АВ = ВС.