Объяснение:
Знайти площу круга, у який вписано трикутник зі сторонами 6 см, 8 см і 10 см.
А
Б
В
Г
Д
10π см2
36π см2
64π см2
25π см2
480π см2
Розв'язання: Формула для обчислення площі круга:
S= πR2, де R - радіус круга.
Маємо a=8 см, b=6 см і c=10 см - сторони заданого трикутника, який вписаний у круг.
Неважко перевірити, що довжини цих сторін задовольняють теорему Піфагора:
c2=a2+b2, або 102=82+62, тому заданий трикутник є прямокутним трикутником з катетами a=8 см, b=6 см і гіпотенузою c=10 см.
За властивістю: якщо прямокутний трикутник вписаний у круг (або коло), то гіпотенуза є діаметром кола, а радіусом є половина цієї ж гіпотенузи, отже
R=c/2=10/2=5 см - радіус круга,
S=πR2=25π см2 - площа круга.
Відповідь: 25π см2 – Г.
Поделитесь своими знаниями, ответьте на вопрос:
Впараллелограмме abcd прямая ac делит угол a пополам. найдите угол, под которым пересекаются диагонали параллелограмма. ответ дайте в градусах. быстрее если можно. и с подробным решением.