Объяснение:
ЗАДАНИЕ 10
если <ВАС=120°, то ВС является основанием треугольника АВС, а АС и АВ - боковыми сторонами. Медиана АН, проведённая из вершины угла А к основанию ВС является ещё высотой и биссектрисой, которая образует два равных прямоугольных треугольника ВАН и САН, в которых АВ и АС - гипотенузы, а ВН, СН и медиана АН - катеты, поэтому <САН=<ВАН=120÷2=60° и <АНВ=<АНС=90°. Сумма острых углов прямоугольного треугольника составляет 90°, поэтому <АВН=<АСН=90–60=30°. Медиана-катет, лежащая напротив угла 30° равна половине гипотенузы поэтому АН=20÷2=10см
ОТВЕТ: АН=10см
ЗАДАНИЕ 11
а) Если АВ и СД параллельны, то <АСД=<KCN=110° и внутренний угол АВД= внешнему углу В
ABСД- четырёхугольник, при котором две противоположные стороны параллельны и 2 противоположных угла равны (по условиям), следовательно этот четырёхугольник - параллелограмм, поэтому АС || ВД
б) если провести отрезок АД, то получится равнобедренный треугольник АСД, в котором АД - основание, а АС = ВД. и являются боковыми сторонами, поэтому углы при основании САД и СДА равны. Сумма углов треугольника составляет 180°, поэтому <САД=<СДА=(180–110)÷2=70÷2=35°.
ОТВЕТ: углы ∆ДАС (САД=СДА)=35°
в) если можно использовать предыдущие данные, что АС=АД, то четырёхугольник АВСД- ромб, у которого все стороны равны, поскольку в задании а) мы выяснили, что АВСД- параллелограмм и если АС=АД,=АВ=ВД=18см, тогда периметр ромба=18×4=72см
ОТВЕТ: Р=72см
Дано: ABCD - трапеция (AD || BC), K ∈ AD, BK || CD, AK = 1,2 м, KD = 0,75AK, = 3,2 м
Найти: ср. линию;
Решение. Пусть - средняя линия. Средняя линия трапеции равна полусумме оснований, т.е. .
В свою очередь, AD состоит из отрезков AK и KD. Тогда AD = AK + KD = AK + 0,75AK = 1,2 + 0,75 · 1,2 = 1,2 + 0,9 = 2,1 (см).
Поскольку BK || CD и AD || BC ⇒ KD || BC, то четырехугольник BKDC - параллелограмм ⇒ BC = DK = 0,9 (см).
Средняя линия: (см).
Т.к. BKDC - параллелограмм, то BK = CD.
Периметр:
ОТВЕТ: = 1,5 см, P = 5 см.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите диагональ параллелограмма со сторонами 6 и 8 см, если длина второй диагонали равна 12 см.