Дано:
NK=KL=LM
уголLNM=30°
Найти: уголК; уголL; уголM; уголN
уголLNM=уголKLN=30°(как накрест лежащие при KL||NM и секущей NL)
Т.к ∆NKL- равнобедренный(по условию), то уголKLN= уголKNL= 30°
Значит, уголN= уголKNL+уголLNM=30°+30°=60°
По свойству равнобедренной трапеции уголМ=уголN=60°
По свойству трапеции:
уголN+уголК=180°
уголК=180°-уголN=180°-60°= 120°; и
уголМ+уголL=180°
уголL=180°-уголМ=180°-60°= 120°
УголК=уголL(как углы при основании равнобедренной трапеции)
ответ: уголК=120°; уголL=120°; уголМ=60°; уголN=60°
1. ∆ ABE=∆CDF (треугольники прямоугольные ABE и CDFравны, так как гипотенузы AB = CD и острые углы, угол BAE и угол DCF равны)
Следовательно:
BE = DF
BE || DF, (BE паралельны DF, так как являются перпендикулярыами к одной прямой)
2. AF - биссектриса ∟А, тогда, ∟КAF = ∟ВAF, ∟ВAF = ∟AFD - как внутренние накрест лежащие при параллельных АВ и СD и секущей AF, значит ∟КAF = ∟AFD. ∆ AFD - равнобедренный, AD = FD. Аналогичная ситуация с ∆ ВFС, ВС = FС. AВСD - параллелограмм, поэтому AD = ВС, следовательно FD = FС, F - средина СD
3. Проведём FM параллельно AB (см. рисунок). Тогда CD = AM = MD. Следовательно, параллелограмм DCFM является ромбом. Диагональ CM ромба DCFM является биссектрисой угла BCD.
Поделитесь своими знаниями, ответьте на вопрос:
На рисунке нр параллельна мв биссектриса угла nmc, ср биссектриса угла mcd. найти угол мвс, если мср=65».