3) Чтобы найти AK, нужно найти MK.
MK=MD-AC,=9-5=4см.
Найдём AK за теоремой Пифагора, тоесть AK²=AM²-MK²
AK²=20-16=4см, AK=2см.
4) Пускай BC-x, тогда AC-x+3.
x²+(x+3)²=29, за теоремой Пифагора
x²+x²+6x+9=29
2x²+6x+9-29=0
2x²+6x-20=0
x²+3x-10=0
x²+5x-2x-10=0
x(x+5)-2(x+5)=0
(x-2)(x+5)=0
x-2=0, x+5=0
x=2, x=-5, но x>0, поэтому BC=2, AC=2+3=5.
5)Косинус-отношение прилежаещего катета к гипотенузе, тоесть cosB=a/c=6/10=0,6.
Тангенс-отношение протилежащего катета к прилежащему, тоесть tgA=b/a=8/6=4/3.
6)AH-сторона напротив угла 30°, поэтому равна половине гипотенузы, тоесть 14:2=7.
HC²=AC²-AH²,
HC²=196-49,
HC²=147,
HC=7√3.
∆ABH-равнобедренный, т.к. <BAH=45°, <ABH=180-90-45=45°, тогда BH=AH=7см.
AB²=BH²+AH²,
AB²=49+49,
AB²=98,
AB=7√2.
Треугольники равеы по всем трем признакам.
Объяснение:
Треугольники DEL и FEL равны по двум сторонам и углу между ними, так как EL - общая сторона, DE=EF (дано), а ∠DEL = ∠FEL (в равнобедренном треугольнике медиана является и биссектрисой. (первый признак)
Или: Треугольники DEL и FEL равны по стороне и двум прилежащим к ней углам, так как DE=EF (дано), ∠EDL = ∠EFL (в равнобедренном треугольнике углы при основании равны), а ∠DEL = ∠FEL (в равнобедренном треугольнике медиана является и биссектрисой. (второй признак).
Или по трем сторонам (третий признак), так как DE=EF (дано), EL - общая, а DL = FL, так как EL - медиана.
Поделитесь своими знаниями, ответьте на вопрос:
Решить по тема: подобные треугольники
bd=2.4