ответ: г) 50*; а) 35 см. в) 60*
Объяснение:
1) Сумма углов любого правильного прямоугольника равны 180*.
В данном четырехугольнике∠В=∠D=130*.
Следовательно ∠А=∠С= 360-(130*2)/2=50*.
********
2) Р=(АВ+ВС)*2;
Обозначим АВ =х, тогда ВС=х+15. Зная, что Р=110, составим уравнение:
(х+х+15)*2=110;
4х+30=110;
4х=80;
х=20 (см)- меньшая сторона.
20+15=35 см - большая сторона четырехугольника.
***************
Диагонали в точке пересечения делятся на равные части:
ВМ=MD=15 см, АМ=СМ=10см. Следовательно четырехугольник - параллелограмм, у которого противоположные стороны и углы равны. ∠А=∠С=120*, ∠В=∠D и в сумме равны 360*.
∠В=∠D=(360*-2*120*)/2=(360*-240*)/2=60*. (ответ: в) 60*)
достаточно доказать, что rptq – равнобокая трапеция. четырёхугольник ardq – вписанный, поэтому ∠rqd = ∠dar. также, поскольку четырёхугольник abcd – вписанный, то ∠bcd = 180° – ∠dar. cледовательно, ∠rqd + ∠bcd = 180°, то есть прямые pt и rq параллельны.
докажем теперь, что в трапеции rptq диагонали равны. четырёхугольник apcq вписан в окружность с диаметром ac, поэтому pq = ac·sin∠bcd. aналогично, rt = bd·sin∠abc. но из вписанности четырёхугольника abcd следует, что значит, pq = rt, то есть трапеция – равнобокая.
Поделитесь своими знаниями, ответьте на вопрос:
Около окружности описана равнобедренная трапеция, боковая сторона которой равна 8 см. найдите периметр трапеции.