Дано:
Диаметр окружности: отрезок .
Центр окружности: точка .
Координаты следующих точек: .
Найти нужно координаты центра окружности: .
Найдём координаты центра окружности, используя правило нахождения среднего арифметического чисел.
Т.е. возьмём у точки "A" и точки "B" координату по оси абсцисс (Ox). Представьте, что мы должны найти среднее арифметическое чисел "6" и "-2".
Вспоминаем правило: чтобы найти среднее арифметическое, нужно сложить все числа и поделить их сумму на их количество (пример прикреплён ниже).
Теперь поработаем с выбранными координатами точек:
.
Теперь мы знаем, что за координата указана по оси абсцисс. Но нам ещё нужно найти координату по оси ординат (Oy).
Делаем всё по аналогии нахождения координаты оси абсцисс. Берём вторые координаты у обоих точек, которые образуют отрезок "AB". Это будут координаты "-7" и "5". Теперь находим их среднее арифметическое и получаем ответ:
.
(чертёж к задаче прикреплён ниже)
ответ: https://tex.z-dn.net/?f=%5CLarge%20%7B%20%5Cboxed%20%7B%20%5Cbold%20%7B%20O(2%3B%20%5C%3A%20-1)%7D%7D%20%7D
.
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны.
ЧТД
Поделитесь своими знаниями, ответьте на вопрос:
Площадь равнобокой трапеции равна 20 см2, а радиус вписанной окружности 2 см. найти основания трапеции