Ромб ABCD перегнули по его большей диагональю BD так, что плоскости ABD и CBD оказались перпендикулярными, а расстояние между точками A и C стала равна 4√2 см. Найдите длину сторона ромба, если тупой угол ромба равен 120°
Объяснение:
Пусть точка пересечения диагоналей О. По свойству диагоналей ромба АО=ОС и ∠ВСО=∠DСО=120°:2=60°
1)Т.к. плоскости ABD и CBD оказались перпендикулярными , то ∠АОС=90°
ΔАОС-прямоугольный , равнобедренный , АО=ОС=х ,АС=4√2 см.
По т. Пифагора х²+х²=(4√2)² , 2х²=16*2 ,х=4 , АО=ОС=4 см.
2) ΔВОС -прямоугольный (диагонали ромба взаимно-перпендикулярны). ∠ОВС=90°-60°=30°. По свойству угла в 30° , ВС=8см. Сторона ромба 8 см.
Поделитесь своими знаниями, ответьте на вопрос:
L= 12 каждое ребро треугольной пирамиды. найти объём (v
Обозначим треугольник АВС, угол С = 90 град., АС = 8 см, ВС = 6 см. Меньшая высота в треугольнике проведена к большей стороне. Самая большая сторона в прямоугольном треугольнике является гипотенузой. Найдем ее по теореме Пифагора. АВ = V(АС^2 + ВС^2) = V(8^2 + 6^2) = V(100) = 10 см. Из угла С проведем к гипотенузе высоту СD. Рассмотрим два треугольника : АВС и АDС. Они являются подобными, так как угол А у них общий и оба они прямоугольные. Из подобия запишем : ВС/АВ = СD/АС Отсюда СD = ВС*АС/АВ = 6*8/10 = 4,8 см.