1) 30*. 30*. 120*.
2) 40*. 80*. 60*.
3) 12 см. 24 см. 24 см.
Объяснение:
1. ∠2+∠4 = 180*
∠4=5∠2;
∠2 + 5∠2 =180*;
6∠2 = 180*;
∠2 = 180* : 6 = 30*.
∠4 = 5*30=150*.
∠1=∠2 = 30* - углы при основании равнобедренного треугольника.
∠3=180-2*30* = 180*-60*=120*.
***
2. Дано. ∠1:∠2:∠3=2:4:3;
Найти ∠1, ∠2, ∠3.
Решение.
Сумма углов треугольнике равна 180*
Пусть ∠1 = 2х.
Тогда ∠2=4х, ∠3=3х.
2х+4х+3х=180*;
9x=180*;
x=180* :9 = 20*.
Тогда
∠1=2х = 2*20 = 40*.
∠2 = 4х = 4*20=80*.
∠3= 3х = 3*20=60*.
***
3. Дано. АВС - равнобедренный треугольник. Р=60см. Одна сторона равна 12 см. Найти все стороны.
Решение.
Пусть стороны равны a, b, c.
Периметр Р=a+b+с, где a=b. c=12 см. Тогда:
2a + 12 =60;
2а=60-12;
2а=48;
а=b= 24 см.
Поделитесь своими знаниями, ответьте на вопрос:
Точки м, к, n расположены соответственно на сторонах ав, ас , вс треугольника авс так что ам/мв =6/1 , an/nc = 8/1 ск /кв =3/4 .отрезки ak и mn пересекаются в точке l . найдите отношение al/lk
Центр вписанной в треугольник окружности лежит в точке пересечении биссектрис этого треугольника. Значит ВМ - это биссектриса угла В (<МВА=<МВС=<В/2=<А). Получается, что <В=2<А.
Т.к. <В+<А=90°, то <А=30°, а <В=60°.
ΔАМВ - равнобедренный (АМ=ВМ=8√3), т.к. углы при основании равны.
Из прямоугольного ΔМВС
МС=ВМ/2=8√3/2=4√3 (катет против угла 30° равен половине гипотенузы)
ВС=√(ВМ²-МС²)=√(192-48)=√144=12
Из прямоугольного ΔАВС
ВС=АВ/2 (катет против угла 30° равен половине гипотенузы)
АВ=2ВС=2*12=24
Объяснение: