Решите в параллелограмме авсд проведена биссектриса угла вад, которая пересекает вс в точке е. 1) докажите, что треугольник аве - равнобедренный 2) найдите ад, если ве-12 см, а р параллелограмма (периметр параллелограмма)-48 см
если при пересечении двух прямых секущей: накрест лежащие углы равны, илисоответственные углы равны, илисумма односторонних углов равна 180°, то прямые параллельны
доказательство.(с накрест лежащими прямыми)пусть при пересечении прямых а и b секущей ав накрест лежащие углы равны. например, ∠ 4 = ∠ 6. докажем, что а || b.предположим, что прямые а и b не параллельны. тогда они пересекаются в некоторой точке м и, следовательно, один из углов 4 или 6 будет внешним углом треугольника авм. пусть для определенности ∠ 4 — внешний угол треугольника авм, а ∠ 6 — внутренний. из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.
ВалентиновичСуриковна1104
28.05.2020
Пишу для итак, самое главное - знать, что, в трапеции (в других фигурах такое тоже наблюдается) диагональ, являющаяся биссектрисой угла, равна боковой стороне(в данном случае обеим боковым сторонам), пусть меньшее основание и боковые стороны трапеции = х, большее основание равно 2х. проведём две высоты, отсекается прямоугольник и два равных треугольника, основания которых равны . по теореме пифагора найдём высоту трапеции (катет в прямоугольном треугольнике). получаем: . а теперь воспользуемся формулой площади трапеции и найдём х. наше выражение равно площади, решаем уравнение . меньшее основание равно 6, а большее равно 12.
если при пересечении двух прямых секущей: накрест лежащие углы равны, илисоответственные углы равны, илисумма односторонних углов равна 180°, то прямые параллельны
доказательство.(с накрест лежащими прямыми)пусть при пересечении прямых а и b секущей ав накрест лежащие углы равны. например, ∠ 4 = ∠ 6. докажем, что а || b.предположим, что прямые а и b не параллельны. тогда они пересекаются в некоторой точке м и, следовательно, один из углов 4 или 6 будет внешним углом треугольника авм. пусть для определенности ∠ 4 — внешний угол треугольника авм, а ∠ 6 — внутренний. из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.