через вершину выпуклого n-угольника проходит d = n*(n-3)/2 диагоналей.
потому, что:
1. из каждой вершины выходит n-1 отрезок к остальным n-1 вершине.
но к двум соседним вершинам - это стороны, а не диагонали.
поэтому из каждой вершины выходит n-3 диагонали.
вершин всего n, поэтому получается n*(n-3) диагоналей.
2. каждая диагональ соединяет две вершины. если мы провели диагональ ас, то одновременно мы провели диагональ са.
поэтому количество диагоналей нужно разделить пополам.
получается d = n*(n-3)/2
1) n = 4, d = 4*1/2 = 2
2) n = 5, d = 5*2/2 = 5
3) n = 6, d = 6*3/2 = 9
4) n = 10, d = 10*7/2 = 35
асательная прямая t к окружности c пересекает окружность в единственной точке t. для сравнения, секущие прямые пересекают окружность в двух точках, в то время как некоторые прямые могут не пересекать окружность совсем. это свойство касательной прямой сохраняется при многих преобразованиях[en], таких как подобие, вращение, параллельный перенос, инверсия и картографическая проекция. говоря техническим языком, эти преобразования не меняют структуру инцидентности касательных прямых и окружностей, даже если сами прямые и окружности деформируются.
радиус окружности, проведённый через точку касания, перпендикулярен касательной прямой. и обратно, перпендикуляр к радиусу в конечной точке (на окружности) является касательной прямой. окружность вместе с касательной прямой имеют осевую симметрию относительно радиуса (к точке касания).
по теореме о степени точкипроизведение длин pm•pn для любого луча pmn равно квадрату pt, длине отрезка от точки p до точки касания (отрезок показан красным цветом).никакая касательная прямая не может проходить через точку внутри окружности, поскольку любая такая прямая должна быть секущей. в то же время для любой точки, лежащей вне круга, можно построить две проходящие через неё касательные прямые. фигура, состоящая из окружности и двух касательных прямых, также обладает осевой симметрией относительно прямой, соединяющей точку p с центром окружности o (см. рисунок справа). в этом случае отрезки от точки p до двух точек касания имеют одинаковую длину. по теореме о степени точки квадрат длины отрезка до точки касания равен степени точки p относительно окружности c. эта степень равна произведению расстояний от точки p до двух точек пересечения окружности любой секущей линией, проходящей через p.
угол θ между хордой и касательной равен половине дуги, заключённой между концами хорды.касательная прямая t и точка касания t свойством сопряжённости друг другу; это соответствие можно обобщить в идею о полюсе и поляре. такая же взаимосвязь существует между точкой p вне окружности и секущей линией, соединяющей две точки касания.
если точка p лежит вне окружности с центром o, и если касательные прямые из p касаются окружности в точках t и s, то углы ∠tps и ∠tos в сумме 180°.
если хорда tm проведена из точки касания t прямой p t и ∠ptm ≤ 90°, то ∠ptm = (1/2)∠mot.
Поделитесь своими знаниями, ответьте на вопрос:
Две стороны параллелограма относятся как 1: 4 , а периметр его равен 30. найдите большую сторону параллелограма