1. Написать уравнение окружности в общем виде, изобразить на координатной плоскости.
2. Выполнив построение, выясните взаимное расположение окружности и прямой, заданных уравнениями:
у=(х+2)2+(у+1) 2=4 ,у= –х+1 .В ответе написать пересекаются, не пересекаются, касаются
3. Написать окружности прямой, с центром в точке О(1;1) и радиусом 2 см.
Объяснение:
1.Уравнение окружности (x – х₀)²+ (y – у₀)² = R² , где (х₀; у₀)-координаты центра.
2. (х+2)²+(у+1) ²=4 окружность с центром в точке (-2;-1) , радиусом 2
у= –х+1
(х+2)²+(-х+1+1) ²=4
(х+2)²+(2-х) ²=4
х²+4х+4+4-4х+х²=4
2х²=-8 или х²=-4 корней нет ⇒ не пересекаются.
3) (x – 1)²+ (y – 1)² =4
Поделитесь своими знаниями, ответьте на вопрос:
Один из внешних углов треугольника равен 40 градусов. углы, не смежные с данным внешним углом, относятся как 3: 5. найдите наибольший из них. ответ дайте вградусах : (
Надеюсь я Если эта информация вам отметить мой ответ "лучшим Объяснение:
а)Угол А=Угол BAD+Угол CAD=24°+42°=66°.
Если АD-высота, то угол D=90°.
Угол С=90°-Угол САD=90°-42°=48°.
Угол В=90°-Угол ВАD=90°-24°=66°.
Угол A=Угол B, а у равнобедренного треугольника углы у основания будут равны. Значит, ABC-равнобедренный треугольник. А его боковые стороны - AC, BC.
б)
1-метод.Если СК-биссектриса, то Угол ACK=Угол BCK=½×Угол С=½×48=24°.
Угол АКС=180°-(Угол А+Угол АСК)=180°-(66°+24°)=180°-90°=90°.
Угол ВКС=180°-(Угол В+Угол ВСК)=180°-(66°+24°)180°-90°=90°.
2-метод. Если треугольник равнобедренный, то биссектриса данного треугольника будет ещё и его высотой. То есть, со стороной АВ она образует углы в 90°.