20
Объяснение:
Координаты точки B1 (3; 4; 4) (т.к. она симметрична точке B относительно плоскости xOz, то у них совпадают координаты x и z, а y противоположна по знаку).
О(0;0;0)
B1 (3; 4; 4)
В(3;-4;4)
OB=√((xb - xo)^2 + (yb - y0)^2 + (zb - zo)^2) = √((3 - 0))^2 + (-4 - 0)^2 + (4 - 0)^2)=√(9+16+16) = √41
OB=OB1=√41 -симметричны
BB1 = √((xb1 - xb)^2 + (yb1 - yb)^2 + (zb1 - zb)^2)=
=√((3 - 3))^2 + (4 - (-4))^2 + (4 - 4)^2)=√64 = 8
По т.Герона S=√(p(p-a)*(p-b)*(p-c))
p=P/2=(8+2√41)/2 = 4+√41
S=√(( 4+√41)( 4+√41-√41)^2*( 4+√41-8)) = √(16*(41-16)) = 4*5 = 20
Объяснение:
7) Тр-к ABD - прямоугольный
ВD=AB*cos45 = 5
Тр-к BDC - прямоугольный
по т.Пифагора BC =√(BD^2 + CD^2) = √(25 + 11) = 6
8) Пусть BC - меньшее основание, AD - большее в трапеции ABCD. AC - диагональ.
BC||AD (по признаку трап.), <BCA=<CAD - накрест леж., По условию <BCA = <ACD
Следовательно <CAD= <ACD и образуют р/б тр-к ACD, отсюда CD=AD=17
Проведем высоты BH и CH1 к AD. BC=HH1=1 (прямоугольник). Т.к. трапеция р/бокая, то AH=DH1 = (AD - HH1)/2 = (17-1)/2=8
Тр-к ABH - прямоугольный. по т.Пифагора
BH = √(AB^2 - AH^2)=√(289 - 64) = 15
S = 1/2*(BC + AD)*BH = 1/2* (1+17)*15 = 135
Поделитесь своими знаниями, ответьте на вопрос:
Каждая диагональ четырехугольника разбивает его на два равнобедренных треугольника. верно ли что этот 4угольник ромб .ответ обоснуйте.