180 см2
Объяснение:
Пусть ВС-малое основание, AD-большое основание р/б трапеции. Вписанная окружность касается сторон АВ, ВС, СD, AD в точках M,N,P,Q соответственно. Т.к. трапеция р.бокая, то AB=CD. BM=BN=CN=CP=3-по свойству касательных к окружности.
AM=AQ=DQ=DP=12-по свойству касательных к окружности. Отсюда ВС=3+3=6, AD=12+12=24
Проведем высоты ВВ1 и СС1 к AD. BC=B1C1=6. AB1=(AD-B1C1)/2=9
Тр-к ABB1-прямоугольный. по. Пифагора: BB1=sqrt(AB^2 - AB1^2)=sqrt(225-81)=12
S=1/2*(BC+AD)*BB1=1/2*(6+24)*12=180 см2
38 см
Объяснение:
1) Из верхнего основания опустим перпендикуляры на нижнее основание - получим 2 равны между собой прямоугольных треугольника (по краям) и прямоугольник - между ними.
2) Так как трапеция равнобедренная, то основания у двух полученных треугольников равны между собой и равны:
(17 - 13) : 2 = 4 : 2 = 2 см.
3) Рассмотрим треугольник. Его основание равно 2 см, а острый угол между боковой стороной и нижним основанием трапеции, согласно условию, равен 60 градусам.
Так как этот треугольник является по построению прямоугольным, то его сторона 2 см является катетом, который лежит против угла 30 градусов:
180 градусов (сумма внутренних углов треугольника) - 90 градусов (прямой угол) - 60 градусов (известный угол) = 30 градусов.
4) Катет 2 см, лежащий против угла 30 градусов, равен половине гипотенузы. А гипотенуза - это боковая сторона трапеции, которую нам надо найти, чтобы рассчитать периметр.
2 = х /2, где х - гипотенуза (она же - боковая сторона трапеции),
откуда х = 2 * 2 = 4 см (неизвестное делимое равно произведению делителя на частное).
5) Так как трапеция равнобедренная, то её боковые стороны равны между собой.
Находим периметр трапеции: 17 + 4 + 13 + 4 = 38 см
ответ: периметр данной трапеции равен 38 см.
Поделитесь своими знаниями, ответьте на вопрос:
Даны точки а(-2; -3) и в(4; 5найдите: а)координаты точки с-середины отрезка ав б)длину отрезка ав : )