Попытаюсь решить на уровне 9 класса.
Кротчайшее расстояние от точки С до прямой AB будет лежать на высоте треугольника ABC - CH. Для точки D, соответственно кратчайшим расстоянием до AB будет расстояние DH. Найдём катет прямоугольного треугольника CB обозначив его за x: x^2 + x^2 = 16^2. x = 8\sqrt{2}8
2
. Далее в прямоугольном треугольнике СHB найдём СH: \sqrt{(8\sqrt{2})^{2} - 8^{2} } = 8
(8
2
)
2
−8
2
=8 . Далее найдём в прямоугольном (по условию) треугольнике CDH расстояние DH: \sqrt{6^{2} + 8^{2} } = 10
6
2
+8
2
=10
ответ: сторона квадрата=2√6см
Объяснение: проведём проэкцию ВД на плоскость квадрата АВСД. Перпендикуляр МД вместе с наклонной МВ и проэкцией ВД образуют прямоугольный треугольник ВМД с катетами МД и ВД и гипотенузой ВМ. Так как угол МВД=30°, то катет МВ, лежащий напротив него равен половине гипотенузы, поэтому
гипотенуза ВМ=4×2=8см
Теперь найдём проэкцию ВД по теореме Пифагора: ВД²=МВ²-МД²=8²-4²=64-16=48
ВД=√48см
ВД является диагональю квадрата АВСД, которая делит его на 2 равных равнобедренных прямоугольных треугольника в которых стороны квадрата равны и являются катетами а диагональ - гипотенузой. В равнобедренном прямоугольном треугольнике катет меньше гипотенузы в √2 раз, поэтому АВ=ВС=СД=АД=√48/√2=
=√24=2√6см
Поделитесь своими знаниями, ответьте на вопрос:
Один из катетов в прямоугольном треугольнике равен 16 см, а косинус прилежащего угла равен 0.4 найти длину второго катета