10√3 см
Объяснение:
Длинная наклонная - с углом 30° с плоскостью
Высота равна половине длинной наклонной
h = l₁/2 = 15/2 см
Теорема Пифагора для второй наклонной l₂ как гипотенузы, высоты h как катета и проекции p₂ как катета против угла в 30°
l₂² = h² + p₂²
l₂² = h² + (l₂/2)²
l₂² = h² + l₂²/4
3/4*l₂² = h²
l₂ = 2h/√3
l₂ = 2*15/2/√3 = 5√3 см
Угол между наклонными 90°
Расстояние d между основаниями наклонных - гипотенуза, наклонные - катеты
l₁² + l₂² = d²
d² = 15² + (5√3)²
d² = 225 + 25*3 = 300
d = √300 = 10√3 см
сумма всег углов тр-ка равна 180 градусов, поэтому разделим 180 пропорционально числам 2,3,4.
1) 180 : (2+3+4) =20 градусов приходится на одну часть
2) 20*2 =40 градусов первый угол
3) 20*3 =60 градусов -второй угол
4) 20*4 =80 градусов третий угол
вторая
1) угол между касательной ас и хордой ав равен половине дуги ав, то есть дуга ав содержит 75*2 =150 градусов
2) центральный угол аов измеряется дугой ав и равен 150 градусов
ответ < аов =150 градусов
третья
треугольники равны по стороне ас ( общая сторона) и двум углам, так как
1) < вас = < асв ( в равнобедренном тр-ке углы при основании равны)
2) < дас =< асе ( по свойству биссектрисы, она делит угол пополам)
Поделитесь своими знаниями, ответьте на вопрос:
Дано точки а в с д. плоскость альфа проходит через точки а в и д, но не проходит через с. какие 3 из этих точек могут лежать на одной прямой?
если прямая принадлежит плоскости то любая ее точка принадлежит плоскости
если две точки прямой принадлежат плоскости, то и вся прямая принадлежит плоскости
поэтому возможные варианты
точки а, в, д могут лежать на одной прямой(прямая лежит в плоскости альфа)
любая прямая, что проходит через три из данных точек будет лежать в плоскости альфа (так как будет содержать две точки, что в ней лежат)
[если прямая проходит через две из точек а, в, и д, то она лежит в плоскости альфа, поэтому провести плоскость через такую прямую (ав, ад или вд) и точку с невозможно, иначе точка с попадет в плоскость альфа]