Объяснение:
1. Це клясичний трикутник Піфагора.
Прямий кут між катетами 3 та 4, тобто площа рахується як площа будь-якого прямокутного трикутника: 0.5*3*4=6
2. АВС - також трикутник Піфагора з кутами А=60, B=30, C=90 катетом 3 гіпотенузою 5, а отже іншим катетом 4. Отже площа АВС, рахується як в попередньому завдан і дорівнює 6
3. Уявімо ромб як 2 рівних і тимчасово рівнобедрених трикутника зі стороною a, та із звгальною підставою b, яка є діагоналлю рмба. Площа такого трикутника рахується за формулую:
Оскільки трикутників 2 - то S ромба = 37.9*2=75.8
64см², 8см
Объяснение:
І вариант (сложный, но из него понятно откуда выведены формулы второго варианта)
1) у квадрата стороны равны и диагонали равны;
2) диагональ и две стороны квадрата образуют прямоугольный треугольник, у которого катеты равны, т.к. это стороны квадрата, а диагональ есть его гипотенузой
3) По теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов.
Пусть катет равен х, тогда:
(8√2)²=х²+х²
64*2=2х²
128=2х²
х²=128:2
х²=64
х=√64, х>0
х=8 (см) - катет треугольника и сторона квадрата
S=8*8=64см² - площадь квадрата
ІІ Вариант: есть формула
Sквадр.=d²/2, где d -диагональ квадрата ⇒S=(8√2)²/2=128/2=64см²
Sквадр.=а*а или а², где а- сторона⇒а=√S=√64=8см)
Поделитесь своими знаниями, ответьте на вопрос:
Диаметр сечения шара равен 8, расстояние от центра шара доего сечения равно 3. найдите радиус шара