Объяснение:
1. Сумма углов выпуклого многоугольника равна 180°*(n-1), где n -
количество углов выпуклого многоугольника.
S=180°*(7-2)=180°*5=900°.
2. S=6*7=42 (cм²).
3. S=180°*(13-2)=180°*11=1980°.
4. 15*7=105 (cм²).
5. S=ah/2 h=2S/a=2*45/18=90/18=5 (cм).
6. (1/2) основания = √(15²-9²)=√(225-81)=√144=12 (см).
S=12*9=108 (cм²).
7. Пусть меньшая диагональ - х. ⇒
Большая диагональ - х+8.

24+8=32 (см). ⇒
S=(24*32)/2=12*32=384 (cм²).
8. S=10*9,5=95 (дм²) s=0,5²=0,25 (дм²) ⇒
N=95/0,25=380 (квадратов).
Высотой пирамиды РАВС есть боковое ребро РА, принадлежащее двум вертикальным граням АРС и АРВ.
Поведём сечение пирамиды вертикальной плоскостью, проходящей через высоту пирамиды перпендикулярно стороне ВС в точке Д.
Отрезок АД = d/sinα.
Так как АД - высота правильного треугольника, то он равен стороне а основания, умноженной на косинус 30 градусов.
Отсюда находим сторону основания а:
a = АД/cos 30° = (d/sinα)/(√3/2) = 2d/(√3sinα).
Площадь основания So = a²√3/4 = 4(√3)d²/(4*3sin²α) = (√3)d²/(3sin²α).
Высота Н пирамиды равна:
Н = d/cosα.
Отсюда получаем объём пирамиды.
V = (1/3)SoH = (1/3)* ((√3)d²/(3sin²α))*(d/cosα) = ((√3)d³/(9sin²α*cosα).
Поделитесь своими знаниями, ответьте на вопрос:
CB=AC*корень из 3
AC^2+CB^2=6^2=36
AC^2+AC^2*3=36
4 AC^2=36
AC^2=9
AC=3