Дан треугольник авс со сторонами ав=4, вс=5 и ас=6. доказать, что прямая. проходящая через точку пересечения медиан и центр вписанной окружности, параллельна стороне вс.
Расстояние от центра вписанной окружности до BC равно радиусу и равно S/p=2S/(4+5+6)=2S/15, где S - площадь АВС, а р - его полупериметр. Расстояние от точки пересечения медиан до ВС равно h/3=2S/3BC=2S/15, где h - высота треугольника АВС, проведенная к стороне BC. Таким образом, эти расстояния равны. Значит прямая из условия параллельна BC.
svetkaiv
01.03.2020
Сечение сферы представляет собой окружность. На рисунке показано сечение шара, 8/проходящее через диаметр АВ и центр окружности сечения с диаметром ВС. ∠ВАС=45°. КМ - касательная к окружности в точке В. АВ⊥КМ ⇒ ∠СВМ=45°. ∠СВМ - вырожденный случай вписанного угла, опирающегося на хорду ВС, значит ∠СВМ=∠ВОС/2 ⇒ α=90°. Формула хорды: l=2R·sin(α/2)=D·sin(α/2). ВС=8sin45=4√2. Линия пересечения плоскостью - это длина окружности с диаметром ВС. С=πD=BC·π=4√2π - это ответ. ------------------------------------------ Это был общий вид решения задачи для любого угла α, но в данном случае можно проще. ∠α=90°, ∠ОВС=45°, значит ОВ=ОС ⇒ ВС=ОВ√2=4√2.
Anatolevich1506
01.03.2020
Сечение сферы представляет собой окружность. На рисунке показано сечение шара, 8/проходящее через диаметр АВ и центр окружности сечения с диаметром ВС. ∠ВАС=45°. КМ - касательная к окружности в точке В. АВ⊥КМ ⇒ ∠СВМ=45°. ∠СВМ - вырожденный случай вписанного угла, опирающегося на хорду ВС, значит ∠СВМ=∠ВОС/2 ⇒ α=90°. Формула хорды: l=2R·sin(α/2)=D·sin(α/2). ВС=8sin45=4√2. Линия пересечения плоскостью - это длина окружности с диаметром ВС. С=πD=BC·π=4√2π - это ответ. ------------------------------------------ Это был общий вид решения задачи для любого угла α, но в данном случае можно проще. ∠α=90°, ∠ОВС=45°, значит ОВ=ОС ⇒ ВС=ОВ√2=4√2.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дан треугольник авс со сторонами ав=4, вс=5 и ас=6. доказать, что прямая. проходящая через точку пересечения медиан и центр вписанной окружности, параллельна стороне вс.
Расстояние от точки пересечения медиан до ВС равно h/3=2S/3BC=2S/15, где h - высота треугольника АВС, проведенная к стороне BC. Таким образом, эти расстояния равны. Значит прямая из условия параллельна BC.