SABCD− правильная четырехугольная пирамида
SM=4SM=4 см
AS=5AS=5 см
AD-AD− ?
SO-SO− ?
S_{nol} -S
nol
− ?
1)
SABCD-SABCD− правильная четырехугольная пирамида, значит
ABCD-ABCD− квадрат
AB=BC=CD=ADAB=BC=CD=AD
ACAC ∩ BD=OBD=O
SOSO ⊥ (ABC)(ABC)
SMSM ⊥ ADAD ⇒ Δ SMA-SMA− прямоугольный
по теореме Пифагора найдем AM:
AM^2=AS^2-SM^2AM
2
=AS
2
−SM
2
AM^2=5^2-4^2AM
2
=5
2
−4
2
AM^2=9AM
2
=9
AM=3AM=3
AM=MD=3AM=MD=3
AD=2*AM=2*3=6AD=2∗AM=2∗3=6 (см)
2)
ACAC ∩ BD=OBD=O
AO=OC=OD=OBAO=OC=OD=OB
d=a \sqrt{2}d=a
2
AC=AD \sqrt{2}AC=AD
2
AC=6 \sqrt{2}AC=6
2
(см)
AO= \frac{1}{2}ACAO=
2
1
AC
AO= \frac{1}{2}*6 \sqrt{2} =3 \sqrt{2}AO=
2
1
∗6
2
=3
2
(см)
SOSO ⊥ (ABC)(ABC) ⇒ Δ SOA-SOA− прямоугольный
по теореме Пифагора найдем SO:
SO^2=AS^2-AO^2SO
2
=AS
2
−AO
2
SO^2=5^2-(3 \sqrt{2} )^2SO
2
=5
2
−(3
2
)
2
SO^2=7SO
2
=7
SO= \sqrt{7}SO=
7
(см)
3)
S_{nol}= S_{ocn}+ S_{bok}S
nol
=S
ocn
+S
bok
S_{ocn}=a^2S
ocn
=a
2
S_{ocn}=AD^2S
ocn
=AD
2
S_{ocn}=6^2=36S
ocn
=6
2
=36 (см²)
S_{bok} = \frac{1}{2} P_{ocn}*lS
bok
=
2
1
P
ocn
∗l
S_{bok} = \frac{1}{2} P_{ABCD}*SMS
bok
=
2
1
P
ABCD
∗SM
P_{ocn}=4*ADP
ocn
=4∗AD
P_{ocn}=4*6=24P
ocn
=4∗6=24
S_{bok} = \frac{1}{2} *24*4=48S
bok
=
2
1
∗24∗4=48 (см²)
S_{nol} =36+48=84S
nol
=36+48=84 (см²)
ответ: 6 см; √7 см; 84 см²
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
Поделитесь своими знаниями, ответьте на вопрос:
т.к. OC,OB,OA - радиусы, то OA=OC=OB
угол COB=углу AOB по условию
Следовательно треугольники COB и AOB равны (по 2 сторонам и углу(первый признак))
N2
треугольник ABC-равнобедренный по условию
Значит AB=BC
Пусть AB- x,
тогда AC - (x+8),
а BC - x.
x+x+x+8=38
3x=30
x=10=AB=BC (см)
2)10+8=AC=18(см)
N3
Всего = 105 градусов(т.к. угол MPH - самый большой угол, в котором находятся более маленькие углы)
Пусть угол MPK - x,
тогда KPH - 4x.
x+4x=105
5x=105
x=21(градус)=MPK углу
N4
т.к. углы A и BMH равны, то MH параллельна AC ( соответственные углы)
Следовательно угол MHB = углу C = 60(градусов) ( соотв)
углы C и MHC - односторонние = 180 градусов ( т.к. стороны параллельны)
Следовательно угол MHC=180-уголC=120 ( градусов )
N5
т.к. углы CBA и ABD -смежные, то угол ABD=180- угол ABC= 140
BO-бис
Cледовательно 140/2=70(градусов)= углу OBD
N6
т.к. AB=BC, то треугольник ABC-равнобедренный
Значит углы A и С - равные
Следовательно AB/2= AM = MB = BC/2 = BH = CH
т.к. MD и HE - перпендикуляры,то углы ADM=HEC=90(градусов)
Следовательно треугольники AMD и HEC - прямоугольные
Они будут равны по гипотенузе и острому углу.
N7(1)
Пусть ACB - острый угол, а BCD - тупой угол
Проведем CF - бис и CE - бис
Значит углы ACF = FCB, а углы BCE = ECD
угол FCE = 90 (можно подставить например: тупой угол = 120,а острый угол = 60(т.к. сумма смежных равна 180),то углы FCB=ACF=30,а углы BCE=ECD=60,тогда 30+60=FCB+BCE=90=FCE)
N7(2)
Пусть ACB и DCE - вертикальные углы.
Проведем бис CO(угла ACB) и CM(угла ECD)
У нас получается, что бис переходят в единую прямую
Значит OCM =180(градусов)
N8
СK-бис и BE-бис
т.к. треугольник ABC - прямоугольный , то углы KCB = ACK = 45
угол СBO = 180 - ( COB + OCB)=40(т.к. сумма углов в треугольнике)
Следовательно угол B =40x2=80
Значит угол С=90-80=10 (т.к. сумма острых углов в прямоугольном треугольнике=90)
N9
Пусть CD пересекает AB в точке O
Cледовательно COA=DOB
сумма 2 раазвернутых углов(прямые) равна 360(градусов)
Пусть x - AOC=DOB(вертикальные углы),
тогда (x + 42) - COB=AOD
x+x+x+42+x+42
4x=276
x=69
2)COB=AOD(вертикальные)=69+42=111
N10
т.к. AB-диаметр,то AO= OB ( O-середина окр)
Проведем радиус CO
Значит AO=OC=OB
Следовательно треугольники AOC и OCB - равнобедренные
Значит углы CAB=OCA=70
угол AOC=180-70x2=40
угол COB = 180 - 40 =140
углы OCB = ABC = (180-140)/2=20