Точка, назовём её С(х;у;z) равноудалена от точек А(1,2,3) и В(-3,3,2).
Это означает, что расстояние АС равно расстоянию ВС.
Точка С принадлежит оси ОХ, значит её координаты равны (х;0;0)
Расстояние между точками можно определить по формуле:
sqr((x2-x1)^2+(y2-y1)^2+(z1-z2)^2), значит
sqr((х-1)^2+(0-2)^2+(0-3)^2)=sqr((x+3)^2+(0-3)^2+(0-2)^2)
(x-1)^2+4+9=(x+3)^2+9+4
(x-1)^2=(x+3)^2
x^2-2x+1=x^2+6x+9
-8x=8
x=-1
Итак, искомая точка, равноудалённая от А и В имеет координаты
С(-1;0;0)
Поделитесь своими знаниями, ответьте на вопрос:
Дан прямоугольный треугольник катеты которого равны 7 см и 24 см. с вершины прямого угла этого треугольника к плоскости в, которая проходит через его гипотенузу, проведено перпендикуляр. найдите длину этого перпендикуляра, если расстояние от его основания до гипотенузы равно 84/25 см.
d₁ =84.25 см .
AB _гипотенуза , AC и BC катеты .
S(ABC) =AC*BC/2 =AB*h/2⇒ h =AC*BC/AB ;
AB =√(AC² +BC²) =√(7² +24²) =(49 +576) =√625 =25.
h =7*24/25= 168/25 ;
d = √ ((168/25)² -(84/25)²) = 1/25 *√ (168² -84²) =1/25*√(168 -84)(168+84) =
1/25*√84*3*84 = 84/25*√3 (см).