Васильев1028
?>

Назовите признак параллельности двух прямых

Геометрия

Ответы

ИП Жанара
1. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
2.Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
3.Если при пересечении двух прямых секущей сумма односторонних углов равна 180(градусов), то прямые параллельны.
serge-lysoff

 Обозначим пирамиду АВСДК, К -вершина. Проведём диагонали основания ВС и ВД. В правильной четырёхугольной пирамиде основание квадрат. Точка пересечения диагоналей -центр квадрата О.Из вершины К опустим высоту к оснванию КО=Н. Обозначим сторону квадрата основания А. Тогда диагональ ВД=А корней из 2. Поскольку сечение по условию -равносторонний треугольник, то ВД=КВ=КД. Обозначим их Х. Тогда КО=Н=корень из((Х квадрат-(Х/2)квадрат)=Х*(корень из 3)/2. Подставляем сюда значение ВД, получим Н=А*(корень из 2)*(корень из 3)/2= А*(корень из 6)/2.  Площадь основания равна S=1/2*ВД*Н=1/2*А*(корень из 2 )*А*(корень из 6 )/2. По условию эта площадь равна 6 корней из 3. Приравнивая получим А квадрат=12. Подставляем в ранее найденное выражение, получим Н=3 корня из 2. Объём правильной четырёхугольной пирамиды равен V=1/3*H*( A квадрат)=1/3*(3 корня из 2)*12=12 корней из 2.

lalaland2744
Четырехугольная пирамида SАВСД называется правильной, если ее основание АВСД– квадрат (АВ=ВС=СД=АД), а высота SO проходит через центр основания O.
Диагональное сечение пирамиды SАВСД - это сечение (ΔASC или ΔBSD), проходящее через вершину S и диагональ основания AC или BD.
Значит  SА=SВ=SС=SД=АС=ВД.
Из равностороннего ΔASC, зная его площадь S=√3*АС²/4, найдем сторону АС (диагональ основания):
АС²=4S/√3=4*6√3/√3=24
АС=2√6.
Тогда сторона основания АВ=АС/√2=2√6/√2=2√3
Также найдем высоту конуса SO (высота  ΔASC):
SO=АС*√3/2=2√6*√3/2=3√2
Объем пирамиды V=SO*АВ²/3=3√2*(2√3)²/3=12√2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Назовите признак параллельности двух прямых
Ваше имя (никнейм)*
Email*
Комментарий*