Объяснение:
Очевидно, что внутри отрезка AB такой точки существовать не может (если бы существовало, тогда сумма двух меньших отрезков должна быть больше длины исходной, что является противоречием), поэтому эта точка должна лежать где-то за пределами отрезка (по условию же сказано, что нужно найти точки на прямой, а не внутри отрезка).
Пусть l - расстояние от искомой точки X до A, тогда l + 6 - это расстояние от X до B. Тогда справедливо уравнение:
Значит, точка X должна отстоять от точки A на 2 см
Выглядит схематично это так:
2см 6см
---------------|----------------|------------------------------------------|----------------->
X A B
Это справедливо и для случая:
6см 2см
------------------|------------------------------------------|-------------|--------->
A B X
Больше таких точек нет.
Объяснение:
1)
∆ADC- прямоугольный.
По теореме Пифагора найдем гипотенузу
АС=√(AD²+DC²)=√(29+25)=√54.
∆ACB- прямоугольный.
По теореме Пифагора найдем гипотенузу
АВ=√(АС²+СВ²)=√(54+36)=√90=3√10
ответ: АВ=3√10
2)
∆АСD- прямоугольный.
По теореме Пифагора найдем катет
АС=√(AD²-CD²)=√(3²-2²)=√(9-4)=√5
∆ABC- прямоугольный.
По теореме Пифагора найдем катет
АВ=√(АС²-ВС²)=√(5-3)=√2
ответ: АВ=√2
3)
∆ADC- прямоугольный.
По теореме Пифагора найдем гипотенузу.
АС=√(АD²+DC²)=√(7²+6²)=√(49+36)=√85
∆ACB- прямоугольный.
По теореме Пифагора найдем гипотенузу
АВ=√(АС²+СВ²)=√(85+15)=√100=10
ответ: АВ=10
Поделитесь своими знаниями, ответьте на вопрос:
Дан прямоугольник abcd. ab=3 см, ad=4 см, ac=5 см. найти периметр треугольника abd.
12 см - P треугольника
Ртр = а+b+c