Пусть основание тр-ка равно а. Тогда Биссектриса делит боковую сторону на отрезки в отношении 8/a, считая от вершины, противоположной основанию. Пусть эти отрезки равны m и n. Тогда
n/m = a/8;
m + n = 8;
Прямая, соединяющая концы биссектрис углов при основании, II основанию, и отсекает подобный треугольник, поэтому
m/8 = 2/a; перемножаем это с первым уравнением, получаем
n/8 = 2/8; n = 2; m = 6; a = 8/3;
Высота к основанию находится так
h^2 = 8^2 - (a/2)^2 = 8^2 - (8/6)^2 = 35*(8/6)^2;
h = 4*√35/3;
S = a*h/2 = (16/9)*√35
Поделитесь своими знаниями, ответьте на вопрос:
Радиус шара 15 см. вне шара дана точка а на расстоянии 10 см от его поверхности. найдите длину такой окружности на поверхности шара, все точки которой отстоят от точки а на расстоянии 20 см.
Вне шара дана точка А на расстоянии 10 см от его поверхности.
Найти
длину такой окружности на поверхности шара, все точки которой отстают от А на 20 см Расстояние измеряется перпендикуляром. А находится на отрезке прямой, перпендикулярной диаметру искомой окружности. Точка А от центра шара удалена на 15+10=25 см ( радиус + расстояние)
Все точки искомой окружности находятся на поверхности окружности основания воображаемого конуса, "надетого" на шар.
Смотрим схематический рисунок - разрез шара через центр и точку А.
АО=15+10=25 см.
ОК=R
АК - расстояние, на которое должна быть удалена точка А от поверхности.
КМ- диаметр искомой окружности,КН - ее радиус.
Имеем треугольник АКО со сторонами, отношение которых 3:4:5 - отношение прямоугольного "египетского" треугольника.
Радиус искомой окружности КН - высота этого треугольика.
Чтобы найти высоту, применим свойство катета прямоугольного треугольника:
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой.
Пусть отрезок гипотенузы, заключенный между катетом и высотой,
ОН =х
Тогда
ОК ²=х*25
25х=225
х=9
Из треугольника КНО
КН²=КО²-ОН²= 225-81=144
КН=r=12 см
Длина окружности с радиусом 12 см
С=2πr= 2π12=24π cм