ea9824165833886
?>

Через середину гипотенузы прямоугольного треугольника перпендикулярно гипотенузе проводится прямая, которая делит треугольник на части, площади которых равны 25 и 39. найти длину гипотенузы

Геометрия

Ответы

matveevaev81
Пусть ВН=НС=у, ЕН=х
треугольники ЕНС и ВАС подобны
ЕН/AB=HC/AC=k
k-коэффициент подобия
S(EHC)/S(ABC)=25/64=k²
k=5/8
AB=(8/5)x
AC=(8/5)y
по теореме Пифагора для АВС
АВ²+АС²=ВС²
(64/25)x²+(64/25)y²=4y²
x²/y²=36/64
x/y=3/4
S(EHC)=(xy)/2=25
xy=50
(3y²)/4=50
y=10√(2/3)
BC=2y=20√(2/3)
Через середину гипотенузы прямоугольного треугольника перпендикулярно гипотенузе проводится прямая,
betepah
Задача в одно действие.
Основания трапеции AB и CD. Если продолжить AB за точку B, и DM за точку M, до их пересечения в точке D1, то очевидно DM = D1M;
Тут можно кучу обоснований дать, например, равны треугольники AMD и BMD1 по КУЧЕ углов (это очевидно подобные треугольники, то есть у них все углы равны) и одной стороне BM = CM;
На самом деле есть "более старшее"обоснование. параллельные прямые делят пропорционально ВСЕ секущие, а тут "неявно" присутствует еще одна параллельная - средняя линия, содержащая точку M.
Вот после этого очевидно, что если также продолжить DC и AM до пересечения в точке A1, то A1M = AM;
То есть получился параллелограмм AD1A1D; (диагонали делятся пополам точкой пересечения). В силу упомянутого равенства треугольников AMD и BMD1; упомянутая в задаче сумма площадей равна площади треугольника D1MA;
Диагонали делят параллелограмм на 4 треугольника, равных по площади, то есть упомянутая сумма равна также площади треугольника DMA, а это уже закрывает вопрос задачи.
TatiyanaBe20135263

1. S =  25,5 дм².

2. Cosα = 0,96.

Объяснение:

1. Построим сечение. Для этого проведем из точки О (пересечение диагоналей основания пирамиды - прямоугольника) луч, параллельно боковому ребру AS и на пересечении этого луча с боковым ребром CS обозначим точку Р.  Соединив точки В и D с точкой Р, получим треугольник BPD -- сечение пирамиды, проходящее через диагональ BD параллельно боковому ребру AS (так как луч ОР лежит в плоскости сечения и параллелен ребру AS).

Диагонали прямоугольника равны и точкой пересечения делятся пополам.

По Пифагору АС = BD = √(6²+8²) = 10 дм.  ОС = АО = BO = OD = 5 дм.

Треугольники ASC и OPC подобны (OP║AS) c коэффициентом подобия k=OC/AC = 1/2. =>  PC = SC/2.

Опустим из точки Р перпендикуляр РН.

Треугольники OSC и HPC подобны (PH║OS)  c коэффициентом подобия k=PC/SC = 1/2.  =>  PH  = SO/2,  НС = ОС/2.

Проведем из точки С перпендикуляр СТ к диагонали BD.  Это высота прямоугольного треугольника BCD, проведенная из прямого угла и по ее свойству CТ = BC*CD/BD =  8*6/10 = 4,8дм.

Проведем из точки Н прямую HQ, параллельно СТ. Тогда HQ⊥BD и по теореме о трех перпендикулярах PQ⊥BD и является высотой треугольника BPD.

Треугольники OCТ и OHQ подобны (HQ║CT) c коэффициентом подобия k=PC/SC = 1/2.  =>  HQ  = CT/2 = 4,8/2 = 2,4 дм.

По Пифагору PQ = √(HQ²+PH²) = √(2,4²+4,5²) = √26,01 = 5,1 дм.

Площадь сечения равна S = (1/2)*10*5,1 = 25,5 дм².

2. Определение: Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек. АВ1 и СD1 скрещивающиеся прямые по определению.

Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.

Проведем диагональ А1В грани АА1В1В. A1B параллельна СD1 как соответствующие диагонали противоположных граней параллелепипеда. АВ1 и А1В - скрещивающиеся прямые. Следовательно, искомый угол - это угол между прямыми АВ1 и А1В. Боковая грань АА1В1В - прямоугольникб диагонали которого пересекаются в точке О и этой точкой делятся пополам. Диагонали равны между собой и по Пифагору равны √(АА1²+АВ²) = √(6²+8²) = 10 ед. Тогда АО = А1О = 5 ед.  АА1 = 6 ед. (дано).

Найдем косинус этого угла по теореме косинусов:

Cosα = (AO²+A1O² - AA1²)/(2*AO*AO) = (5²+5²-6²)/(2*25) = 14/50 = 0,28.

Тогда по известной формуле

Sinα = √(1 - Cos²α) =  √(0,9216) = 0,96.


Основанием пирамиды, высота которой равна 9 дм, а боковые ребра равны друг другу, является прямоугол

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Через середину гипотенузы прямоугольного треугольника перпендикулярно гипотенузе проводится прямая, которая делит треугольник на части, площади которых равны 25 и 39. найти длину гипотенузы
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

fouettearoma
araqsyabadalyan1988
Kamil
spikahome
Salko17
porotikova1004
Татьяна Марина1287
karavan85450
vinokurova88251
hellomaxim
ladykalmikova81
assistant
catsk8
fastprofit
gulsinatahckeeva