Rik200081490
?>

Две касающихся внешним образом в точке к окружности, радиусы которых=6и24, вписаны в угол с вершиной а.общая касательная к этим окружностям, проходящая через точку к, пересекает стороны угла в точках в и с, найдите радиус окружности, описанной около треугольника авс.

Геометрия

Ответы

rusplatok
Изобразите на рис. прям. треуг. O1AD с вертикальным катетом O1D, горизонтальным AD. Катет проходит по точкам D, B, D2, A.
r1= O1D=O1K=24. Гипотенуза проходит по точкам O1, K, O2, A. r2=O2D2=O2K=6. Радиус описанной окружности R будем искать на основе теоремы синуса: R=2BK/2sin2α, α угол O1AD.  Тот же угол образуется между O1O2 и прямой, параллельной AD проведенной через О2. Значит
r1=r2+(r1+r2)sinα, sinα=(r1- r2)/(r1+r2)=18/30=0,6. Отрезок ВК, перпендикулярный О1А найдем из ΔAKB: KB=KAtgα.
 R=2KAsinα/2cosαsin2α=KA/2(cosα)^2. KA=r2+r2/sinα.
R=r2(1+1/sinα0/2(cosα)^2=r2(sinα+1)/2sinα(1 - (sinα)^2)
R=6*2,6/1,2*(1 - 0,36)=20,31.
aksmobile
АВ = Рabcd : 4 = 12 : 4 = 3 см
ВВ₁ и DD₁ - медианы, значит
AD₁ = D₁B = AB₁ = B₁D = 3/2 см

ΔABD равнобедренный, поэтому
∠ABD = ∠ADB,
BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒
BB₁ = DD₁.

Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины.
Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x.
ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°.
∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.

Рассмотрим ΔD₁OB. По теореме косинусов
D₁B² = OD₁² + OB² - 2·OD₁·OB·cos 80°
9/4 = x² + 4x² - 2 · x · 2x · cos80°
9/4 = 5x² - 4x² · cos80°
9/4 = x² (5 - 4cos80°)
x² = 9 / (4(5 - 4cos80°))
x = 3  / (2√(5 - 4cos80°))

BB₁ = 3x = 9  / (2√(5 - 4cos80°)) или
BB_{1} = \frac{9}{2 \sqrt{5 - 4cos 80^{0} } }

Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится:
cos 80° ≈ 0,1736
BB₁  = 9  / (2√(5 - 4cos80°)) ≈ 2,2
О. Карпов1691
1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения:
R=3/cos 18=3/0.95=3.15 (см).
Найдем сторону фигуры:
a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см)
ответ: 1.89 см.
2) Найдем R:
R = r/cos 180/n=5/√3/2=10√3/3 (см)
Длина стороны равна R, следовательно a=R=10√3/3, значит, 
P = 6a=10√3/3*6=20√3 (cм) или 34.64 см.
ответ: 20√3 см или 34.64 см.
3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см).
ответ: 30 см.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Две касающихся внешним образом в точке к окружности, радиусы которых=6и24, вписаны в угол с вершиной а.общая касательная к этим окружностям, проходящая через точку к, пересекает стороны угла в точках в и с, найдите радиус окружности, описанной около треугольника авс.
Ваше имя (никнейм)*
Email*
Комментарий*