Поделитесь своими знаниями, ответьте на вопрос:
Две касающихся внешним образом в точке к окружности, радиусы которых=6и24, вписаны в угол с вершиной а.общая касательная к этим окружностям, проходящая через точку к, пересекает стороны угла в точках в и с, найдите радиус окружности, описанной около треугольника авс.
r1= O1D=O1K=24. Гипотенуза проходит по точкам O1, K, O2, A. r2=O2D2=O2K=6. Радиус описанной окружности R будем искать на основе теоремы синуса: R=2BK/2sin2α, α угол O1AD. Тот же угол образуется между O1O2 и прямой, параллельной AD проведенной через О2. Значит
r1=r2+(r1+r2)sinα, sinα=(r1- r2)/(r1+r2)=18/30=0,6. Отрезок ВК, перпендикулярный О1А найдем из ΔAKB: KB=KAtgα.
R=2KAsinα/2cosαsin2α=KA/2(cosα)^2. KA=r2+r2/sinα.
R=r2(1+1/sinα0/2(cosα)^2=r2(sinα+1)/2sinα(1 - (sinα)^2)
R=6*2,6/1,2*(1 - 0,36)=20,31.