ΔОСВ равносторонний. В нем углы при вершинах С и В равны.т.к. ОС=ОВ= радиусы одной окружности. Т.е. равнобедренный получается. но поскольку углы С и В еще и по 60°в, то и угол О в этом треугольнике 60 °. Тогда внешний угол АОВ равен сумме двух внутренних ∠ В и ∠С, с ним не смежными, т.е. он равен 60°+60°=120°, а тогда в равнобедренном треуг. АОВ ∠ А =∠ В= 30 °,
(180°-120°)/2=30°, как углы при основании равнобедренного ΔАОВ, т.к. АО и ВО радиусы одной окружности и ∠DАС = 90°, т.к. радиус, проведенный в точку касания перпендикулярен касательной АD, значит, искомый ∠ DАВ =90°-30°=60°
ответ 60 °
1-Центр точка О. Треугольник АВО - равносторонний.Все углы по 60. Треугольник АОД - равносторонний. Все углы по 60. Значит, угол А равен 120. Треугольник СОД - равнобедренный. Угол АОД для него внешний и равен сумме 2-х, не смежных с ним. Значит, углы ОСД и ОДС равны по 30. . То же и в треугольнике СОВ. Значит, угол С = 60. Угол Д = 90, угол В = 90.
Дуга АВ равна 60. Дуга ВС = 120. Дуга СД = 120. Дуга АД = 60. Как дуги, на которые опираются центральные углы.
2-r=S\p
R=abc\4s
1)S=1\2*18*12=108
2)r=108\24=4.5
3)R=18*15*15\4*108=9.375
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Биссектриса угла а поямоугольника авсd пересекает сторону вс в точке к. найдите отношение ав: аd, если отношение площади треугольника авк к площади трапеции аксd равно 3/7.
ΔABK -равнобедренный прямоугольный
пусть АВ=х,
SΔABK=(x*x)/2, SΔABK=x²/2
трапеция AKCD:
КС=ВС-ВК
КС=у, BC=x+y, ⇒AD=x+y
AB=CD=h=x
SAKCD=(y+(x+y))*x/2, SAKCD=(x+2y)*x/2
SΔABK:SAKCD=3:7
x²/2 :(x+2y)*x/2=3:7, x/(x+2y)=3/7
4x=6y, x=1,5y
AB=1,5y, AD=1,5y+y, AD=2,5y
AB:AD=1,5y:2,5y
AB:AD=3:5 или AB:AD=0,6