1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном прямоугольном треугольнике один из катетов лежит в плоскости a, а другой образует с ней угол 45. найдите угол между гипотенузой данного треугольника и данной плоскостью. если не трудно, с рисунком
Опустим перпендикуляр на плоскость АД (∠АДВ=∠АДС=90°)
∠АВД=45°
Нужно найти ∠АСД.
В ΔАВС обозначим АВ=ВС=х, тогда гипотенуза АС=√2АВ²=√2х²=х√2
В прямоугольном ΔАДВ ∠АВД=45°, значит и ∠ВАД=45°, следовательно этот треугольник равнобедренный (АД=ВД=АВ/√2=х/√2).
Из прямоугольного ΔАДС найдем ∠АСД:
sin АСД=АД/АС=х/√2:х√2=1/2
∠АСД=30°