Дано: Треугольник АВС. АВ=ВСб М∈BD, K∈AC. MK║AB. <ABC=126°,<BAC=27°.
Найти <MKD, <KMD и <MDK.
Решение.
Треугольник АВС равнобедренный, следовательно BD - биссектриса, высота и медиана треугольника. <BAC=<BCA=27°, Значит
<ABD = (1/2)*(<ABC) = 126/2 = 63°. <BDA=<MDK = 90°.
MK параллельна АВ, значит <MKD=<BAC=27°, а <KMD=<ABD=63°, как соответственные углы при параллельных прямых АВ и МК и секущих AD и BD соответственно.
ответ: <MKD=27°, <KMD=63°, <MDK=90°.
Шел длинным путем. Доказал. И задумался. А зачем условие равнобедренности?)
.
а) ∠DВМ=∠МВС; по условию, ∠МВС=∠ВМD, как внутр. накрест лежащие при DМ║ВС и секущей ВМ, Мзанчит, ДМ=ВD.
б) ∠МСD=∠ВСD по условию; ∠DСВ=∠СМ, как внутр. накрест лежащие при DМ║ВС и секущей DС, занчит, DМ=МС.
из а) и б)⇒DМ=ВD=МС
как бы обошелся без того, что треугольник равнобедренный.
Положим, что равные углы, а именно ∠МВС=∠DСВ=α
как половины равных углов при основании равнобедренного треугольника .
а т.к. в ΔВМС ∠В+∠С=α+2α=3α, то ∠ВМС=180°-3α; т.к. ДМ║ВС, то ∠DМС+∠ВСМ=180°⇒∠ВМD=180°-(180-3α)-2α=α⇒DМ=ВD; и опять таки т.к. DМ║ВС при секущей DС : ∠СDМ=∠DСВ. как внутр. накрест лежащие , т.е. тоже равен α⇒ DМ=МС
а из того, что ВD= DМ и МС=DМ⇒DМ=ВD=МС Доказано. но не покидает ощущение недосказанности. если можно доказать равенство не прибегая к равнобедренности треугольника, то зачем это лишнее условие?)
Поделитесь своими знаниями, ответьте на вопрос:
Сторона одного квадрата равна 13 см, а сторона другого квадрата равна 2 см. найди сторону квадрата, равновеликого данным вместе взятым.
равновеликие - площади равны.