Svetlana
?>

Луч с – биссектриса угла (ab луч d - биссектриса угла (ac). найдите < ( bd ), если < ( ad )=20°

Геометрия

Ответы

almazsit85
/////////////////////////////////////////////////////////////////////
Луч с – биссектриса угла (ab). луч d - биссектриса угла (ac). найдите < ( bd ), если < ( ad )=
o-kate17
Решение:
Найдем величины отрезков АМ, MN и ND.
Их сумма равна 16,5, а отношение 1:17:15, то есть х+17х+15х=33х=16,5.
Отсюда х=0,5. Тогда АМ=0,5 MN=8,5 ND=7,5.
Опустим перпендикуляр РН из точки Р на сторону АD.
Это высота треугольника МNР.
Тогда из подобия треугольников ALN и НРN (РН параллельна АВ) имеем:
РН/AL=HN/AN. или НN=AN*PH/AN или HN=9*РН/5 (1).
Из подобия треугольников CMD и PMН (РН параллельна CD) имеем:
РН/CD=MH/MD. или MН=MD*PH/CD или MH=16*РН/10 или MH=1,6*РН (2).
MH+HN=8,5 или МН=8,5-HN (3).
Приравниваем (2) и (3):
1,6*РН=8,5-HN или HN=8,5-1,6*PH (4).
а теперь приравняем (1) и (4):
9*РН/5=8,5-1,6*PH или
9*РН=42,5-8РН или 17РН=42,5. Отсюда РН=2,5.
Итак, высота треугольника MNР равна 2,5, а его основание равно 8,5.
Следовательно, площадь треугольника MNР равна Smnр=(1/2)*8,5*2,5=10,625.
ответ: площадь треугольника MNР равна 10,625 ед².

Решение координатным методом:
Пусть начало координат в точке А(0;0).
Величины отрезков АМ=0,5 MN=8,5 ND=7,5.
Тогда координаты точек M(0,5;0) и N(9;0).
Имеем точки:
L(0;5), M(0,5;0), N(9;0) и C(16,5;10).
Напишем уравнения прямых, проходящик через две точки по формулам:
(x-x1)/(x2-x1)=(y-y1)/(y2-y1).
Точки  C(16,5;10) и M(0,5;0) .
Прямая СМ: (х-0,5)/16=(y-0)/10 или 10x-16y=5.  (1)
Точки  L(0;5) и N(9;0) .
Прямая LN: (х-0)/9=(y-5)/-5 или 5x+9y=45.  (2)
Координаты точки пересечения Р(х;y) найдем, решив систему двух уравнений (1) и

(2).
10x-16y=5  (1)   
5x+9y=45  (2) или
10x-16y=5  (1)
10x+18y=90 (2). Вычтем из второго первое: 34y=85.
y=2,5 тогда х=4,5.
Итак, имеем точку Р(4,5;2,5)
Координата y этой точки - это высота треугольника MNР.
Зная основание MN = 8,5 этого треугольника, находим его площадь:
Smnp=(1/2)*8,5*2,5=10,625 ед².

Впрямоугольнике авсd со сторонами ав=10 и вс=16.5 точка l является серединой ав. на стороне ad после
alexfold
8.1 Площадь равнобедренной трапеции равна:
S=(a+b)/2*h, где
a и b - основания трапеции (11 и 27)
h - высота
Отсюда, высота равна:
h=S:(a+b)/2=2S:(a+b)=2*285:(11+27)=225:38=15
Т.е. BE (см. рисунок 1) = 15
AE=FD=(27-11):2=16:2=8
По теореме Пифагора:
AB²=BE²+AE²=15²+8²=225+64=289
AB=√289=17
Боковая сторона трапеции равна 17. Т.к. трапеция равнобедренная, то боковые стороны равны: AB=CD=17
Периметр — это сумма боковых сторон и оснований, который равен:
Р=11+27+17+17=72
ответ: периметр равен 72.

8.2. Найти высоту правильного треугольника, если радиус описанной около него окружности, равен 10 см.

R=10

т.к. ΔАВС - равносторонний, следовательно ∠А=∠В=∠С=60°

R=a/2sin60=a/√3 

тогда a=R√3=10√3

h=√3/2*a=√3*a/2=√3*10√3/2=√9*10/2=3*10/2=15
ответ: высота правильного треугольника равна 15

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках Mи Nсоответственно. Найдите BN, если MN=13, AC=65, NC=28.
Пусть х - длина ВN.
Тогда, ВС=х+32
Составим и решим пропорцию:
MN:AC=BN:BC
 17/51=х/(х+32) (умножим на 51, чтобы избавиться от дроби)
17=51х/(х+32)
17*(x+32)=51x
17x+544=51x
17x-51x=-544
-34x=-544
34x=544
x=16
ответ: BN=16

8.1 площадь равнобедренной трапеции равна 285. найдите периметр этой трапеции, если ее основания рав

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Луч с – биссектриса угла (ab луч d - биссектриса угла (ac). найдите < ( bd ), если < ( ad )=20°
Ваше имя (никнейм)*
Email*
Комментарий*