Вячеслав
?>

Диагонали прямоугольника авсд пересекаются в точке о. найдите углы треугольника сод, если угол адв=40°

Геометрия

Ответы

Пономаренко
Угол BDC= 50 градусов, т.к. угол ABD и угол BDC накрест лежащие, 
угол OCD=40 градусов, угол COD= 90 градусов
.Е.-Прокопьева
треугольнике ABC AC=CB=10см, угол A=30 градусов, BK- перпендикуляр у плоскости треугольника и равен 5 см. Найти расстояние от K до AC 

Рассмотрим образованную пирамиду АВСК. КВ перпендикулярно АВС, значит нам необходимо найти длину высоты, опущенной в грани АСК из вершины К на АС. По теореме о трех перпендикулярах ее проекция на плоскость АВС будет перпендикулярна АС. Обозначим точку пересечения высоты с АС через Н. Тогда нужно найти КН. 
Рассмотрим основание пирамиды - треугольник АВС. Он равнобедренный АС=ВС=10, с углом у основания А=30 градусов. Опустим высоту из вершины треугольника С на АВ - СМ. Высота, опущенная из точки С, будет и биссектрисой, и медианой треугольника. То есть АМ=МВ. Треугольник АСМ - прямоугольный, с одним из осмтрых углов = 30 градусов, значит катет, лежащий против этого угла, равен половине гипотенузы: АМ=1/2*АС, АМ=1/2*10=5 (см). По теореме Пифагора найдем второй катет СМ: 
CM=sqrt(AC2-AM2) 
CM=sqrt(100-25)=sqrt75=5sqrt3 
BH- проекция КН на плоскость основания АВС, и, как было уже отмечено, ВН перпендикулярна АС. Рассм отрим треугольники АНВ и АМС- они подобны: 
АН/АМ=НВ/МС=АВ/АС 
НВ/МС=АВ/АС 
НВ=МС*АВ/АС 
НВ=5*(2*5sqrt3)/10=5sqrt3 
Треугольник КНВ - прямоугольный (КВ перпендикулярно плоскости АВС). По теореме Пифагора найдем КН: 
KH2=KB2+HB2 
KH=sqrt(25+75)=sqrt100=10 (см)
kit036
Угол между образующей конуса и плоскостью основания равен углу между образующей и радиусом основания, проведенного к данной образующей. Площадь боковой поверхности конуса: pi*R*l, площадь основания - pi*R^2. Поскольку площадь боковой поверхности в два раза больше площади основания, то pi*R*l = 2*pi*R^2. упрощаем уравнение: l = 2R. Из рисунка CB = 2OB. Из прямоугольного треугольника COB: угол, который лежит против катета, который в два раза меньше гипотенузы, равен 30 градусов. OB - катет, CB - гипотенуза, следовательно, угол BOC = 30 градусов. Искомый угол CBO = 90 - 30 = 60 градусов.

Площадь боковой поверхности конуса в два раза больше площади основания. найдите угол между образующе

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Диагонали прямоугольника авсд пересекаются в точке о. найдите углы треугольника сод, если угол адв=40°
Ваше имя (никнейм)*
Email*
Комментарий*