Пусть дан треугольник АВС, и пряммые АВ и АС параллельны плоскости Альфа. Пряммые АВ и АС пересекаются. Через них можно провести плоскость и причем одну. Пусть плоскость которая проходит через пряммые АВ и АС - плоскость Бэта. Тогда она параллельна плоскости Альфа, так как две пересекающиеся пряммые этой плоскости параллельны плоскости Альфа.
Далее. Две точки В и С принадлежат плоскости Бэта (так как принадлежат пряммые АВ и АС), значит и вся пряммая ВС принадлежит плоскости Бэта. Любая пряммая плоскости Бэта паралельна плосоксти Альфа (так плоскосит параллельны), в частности пряммая ВС параллельна плоскости Альфа.
ответ: третья пряммая тоже паралелльна плоскости
Поделитесь своими знаниями, ответьте на вопрос:
1) диагонали прямоугольника пересекаются в точке o. угол boa равен 84 градусов. найдите угол oad. 2) найдите углы прямоугольной трапеции, если один из его углов равен 61 градус. 3) в параллелограмме одна сторона на 25 см больше другой. найдите стороны параллелограмма, если периметр равен 150 см 4) в трапеции abcd диагональ bd перпендикулярен стороне ab, угол bda равен углу cdb и равен 30 градусов. найдите da, если периметр трапеции 100 см 5) в равнобедренной трапеции диагональ составляет с боковой стороны угол в 120 градусов. боковая сторона равна меньшему основанию. найдите углы трапеции 6) в прямоугольнике mphk точка о - точка пересечения диагоналей. ра и нв - перпендикуляры, проведенные из вершин р и н соответственно к прямой мк. ма = ов. найдите угол ром 7) abcd ромб. ве - биссектриса угла abd (опущена на ad угол bed равен 150 градусов. найдите угол acd. , сколько сможете)
∠А+∠Д=180-96=84°, а т.к они равны
∠А=42°
трапеция прямоугольная поэтому 2 угла сразу по 90°, третий по усл задачи - 61°, а сумма всех углов=360°, отсюда 4й угол=119°
(х+х+25)*2=150
4х+50=150
4х=100
х=25, тогда вторая сторона 25+25=50
∠А=180-(90+30)=60° тк сумма ∠ треугольника АВД=180°
значит ∠А=∠АДС, а раз так то трапеция равнобокая, значит и углы АВС и ВСД равны
между собой и равны [360°(сумма углов трапеции)-(2*60)]/2=120°
Рассмотрим ΔВСДΔ в нем∠ВДС=30°(по условию)∠С 120°(мы нашли), значит ∠СВД=180-(30+120)=30°, т.е получается ∠СВД=∠ВДС, а значит Δ - равнобокий, т.е. ВС=СД (и получается раз трап равнобок то)= АВ
следовательно раз Р=100см, то АД=100-3АВ
рассмотримΔАВД в нем син30°=АВ/АД т.к син 30°=1/2,⇒АВ/АД=1/2
⇒АВ=1/2АД подставляем вместо АВ в равенство АД=100-3АВ 1/2АД и получаем АД=100-3*1/2АД
АД+3/2АД=100
5/2АД=100
АД=100*2/5=40
стороны АВ=ВС=СД по условию
рассм ΔВСД - он равнобедренный,, а значит ∠ДВС=∠ВДС
пусть ∠ДВС = х, тогда 120°+х =∠С(т.к. трапеция равнобедренная)
в Δ же ВСД ∠С=180°-2х
составим и решим систему уравнений
{120°+х=∠С
{∠С=180°-2х
подставляем значение ∠С из второго уравнения в первое
120+х=180-2х
3х=60
х=20°
значит ∠АВС=120°+20°=140°=∠ВСД
∠А=∠АДС=[360-(140*2)]/2=40°