tonyakuznetsova
?>

Втреугольнике abc ab=bc, а высота ah делит сторону bc на отрезки bh=64 и ch=16. найдите cosb.

Геометрия

Ответы

карпова581
Корень из двух делённое на два
gamolml
Чертеж, я думаю, сумеешь сам нарисовать. Ромб с вершинами А, В, С, D Черти диагонали. Они пересекаются под прямым углом и в точке пересечения делятся пополам (как ромбу и полагается) . Диагонали АС и BD. Точка пересечения диагоналей О. Дано: АВ=50 см, т. к все стороны ромба равны, т. е. 200/4=50 Получились 4 прямоугольных треугольника, равных друг другу. S ромба = 4*S abo S abo=1/2AO*BO (площадь прямоугольного треугольника равна половине произведения катетов) Диагонами ромба относятся друг к другу как 3:4 Катеты треугольника АВО обозначаем как 3х и 4х (т. к. половины диагоналей тоже соотносятся друг с другом как 3:4) Т. О. получается прямоугольный треугольник с катетами 3х и 4х, и с гипотенузой 50 см. Согласно теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов. Гипотенуза = 50 см. Получаем: АВ=1/2АО*ВО 2500=(3х) 2+(4х) 2 2-это в квадрате 2500=9х2+16х2 2500=25х2 х2=100 х=10 S abo=1/2AO*BO AO=3x=30 см BO=4x=40 см S abo=1/2*30*40=600 S abcd=4*600=2400 ответ: площадь ромба = 2400 см2 Надеюсь, разберешься. Главное обозначь на чертеже вершины правильно. Кошмааар...
Шаленко

 Опустим из тупого угла трапеции высоту на большее основание.

Получим прямоугольный треугольник с  гипотенузой = диагонали трапеции, один из острых углов которого 30° из условия задачи. 

Высота, как катет, противолежащий углу 30°,  равна половине диагонали и равна 2 см
Боковая сторона равна 2√2, отсюда отрезок, который высота отрезала от большего основания, равен 2 см, так как боковая сторона равна диагонали квадрата со стороной 2 см (по формуле диагонали квадрата а√2) . Так как образовался равнобедренный прямоугольный треугольник, острые углы в нем 
 45°, и поэтому второй угол  при большем основании равен 45°. Отсюда тупой угол при меньшем основании равен
180-45=135°.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Втреугольнике abc ab=bc, а высота ah делит сторону bc на отрезки bh=64 и ch=16. найдите cosb.
Ваше имя (никнейм)*
Email*
Комментарий*