АВСД - параллелограмм, АД=ВС , АВ=СД , АД║ВС , АВ║СД .
∠АВС=110° ⇒ ∠ВАД=180°-110°=70° , ∠BCD=∠BAD=70° .
∠LAD=10° , тогда ∠BAL=70°-∠ДАL=70°-10°=60° .
∠KCD=10° , тогда ∠ВСК=∠ВСD-∠KCD=70°-10°=60° .
Рассмотрим два треугольника: ΔABL и ΔBCK .
Так как в ΔABL две стороны равны АВ=АL по условию , то ΔABL -равнобедренный. А так как ещё и угол в равнобедренном треугольнике ∠ВАL=60°, то этот треугольник - равносторонний, следовательно ВL=AB=AL=CD, ∠АВL=60° ⇒
∠CBL=110°-∠ABL=110°-60°=50° .
Аналогично, ΔВСК - равносторонний (КС=ВС по условию и ∠ВСК=60°) , следовательно ВК=ВС=СК=AD, ∠KBC=60° ⇒
∠KBL=∠KBC-∠CBL=60°-50°=10° .
Теперь рассмотрим три равных треугольника: ΔADL=ΔKCD=ΔKBL . Они равны по 1 признаку равенства треугольников:
AD=KC=BK , AL=CD=BL , ∠LAD=∠KCD=∠KBL=10° .
Отсюда следует, что стороны LD=KD=KL ⇒ ΔKLD - равносторонний, а в равностороннем треугольнике все углы равны 60°.
Значит, искомый угол ∠KDL=60° .
Основные свойства и признаки равнобедренного треугольника:
1. углы при основании равнобедренного треугольника равны.
2.если 2 угла реугольника равны, то он равнобедренный.
3.в равнобедренном тругольнике медиана, биссектриса и высота, проведеные к основанию совпадают (теорема.)
4.если в треугольнике совпадает любая пара орезков из тройки -медиана, бисектриса, высота, то он явл. равнобедренным.
з.ы. правильность утверждения о свойстве той или иной геом. фигуры устанавливается путем рассуждения. это рассуждение называется доказательством. а само утверждение, которое доказывается называется теоремой.
Поделитесь своими знаниями, ответьте на вопрос:
Как записать терему (первый признак равенства треугольников: подвум сторонам и углу между ними)