Курнев-Анастасия359
?>

Объясните своими словами, что такое медиана, биссектриса, вершина треугольника. какой треугольник называется равнобедренным?

Геометрия

Ответы

Arsen-araqelyan20164
Медиана - отрезок, соединяющий вершину треугольника с серединой противоположной стороны
Биссектриса - отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны
Вершина - это точка, в которой соединяются две стороны треугольника
Равнобедренный-это треугольник у которого две боковые стороны равны, а третья является основанием.
leonid-adv70

Пусть дан треугольник АВС с прямым углом А, в котором проведена биссектриса АЕ, длину которой нужно найти.

Биссектриса треугольника делит сторону треугольника на отрезки, пропорциональные прилежащим сторонам.

Запишем пропорцию:

\rm{\dfrac{AB}{BE}= \dfrac{AC}{CE}}

\mathrm{\dfrac{AB}{AC}= \dfrac{BE}{CE}}=\dfrac{a}{b}

Пусть \mathrm{AC}=x. Тогда \mathrm{AB}=\dfrac{a}{b} x.

Запишем теорему Пифагора для треугольника АВС:

\rm{AB^2+AC^2=BC^2}

\left(\dfrac{a}{b} x\right)^2+x^2=(a+b)^2

\dfrac{a^2}{b^2}\cdot x^2+x^2=(a+b)^2

\left(\dfrac{a^2}{b^2}+1\right)\cdot x^2=(a+b)^2

x^2=\dfrac{(a+b)^2}{\dfrac{a^2}{b^2}+1}

x^2=\dfrac{b^2(a+b)^2}{a^2+b^2}

x=\dfrac{b(a+b)}{\sqrt{a^2+b^2} }

Значит:

\mathrm{AC}=\dfrac{b(a+b)}{\sqrt{a^2+b^2} }

\mathrm{AB}=\dfrac{a}{b}\cdot \dfrac{b(a+b)}{\sqrt{a^2+b^2} }=\dfrac{a(a+b)}{\sqrt{a^2+b^2} }

Запишем теорему синусов для треугольника АЕС:

\rm{\dfrac{AE}{\sin C} =\dfrac{EC}{\sin EAC} }

Так как АЕ - биссектриса, то ЕАВ и ЕАС равны по половине прямого угла, то есть по 45°.

Синус угла С определим как отношение противолежащего катета к гипотенузе:

\rm{\sin C=\dfrac{AB}{BC} }

Теперь можем найти биссектрису:

\rm{AE =\dfrac{EC\cdot\sin C}{\sin EAC} }

\rm{AE =\dfrac{EC\cdot AB }{BC \cdot\sin EAC} }

\mathrm{AE} =\dfrac{b\cdot\dfrac{a(a+b)}{\sqrt{a^2+b^2} } }{(a+b) \cdot\sin 45^\circ}=\dfrac{\dfrac{ab}{\sqrt{a^2+b^2} } }{ \sin 45^\circ} }=\dfrac{\dfrac{ab}{\sqrt{a^2+b^2} } }{\dfrac{1}{\sqrt{2} } }=\dfrac{ab\sqrt{2}}{\sqrt{a^2+b^2}}

ответ: \dfrac{ab\sqrt{2}}{\sqrt{a^2+b^2}}


Из вершины прямого угла проведена биссектриса, делящая гипотенузу на отрезки а и b. Чему равна эта б
Штакина1568

угол MBC = 30°

угол ВCA = 60

Объяснение:

Дано:

АВС - треугольник

АМ = СМ

уг. АВС = 60°

уг. ВМА = 90°

-------------

Найти

уг. МВС - ?

уг. ВСА - ?

Решение

угол ВМА = 90° => уг. ВМС = 90°

т.е. ВМ | АС, а значит,

ВМ - высота, проведенная из вершины В на АС.

Также АМ = МС, а значит

ВМ - медиана, проведенная из вершины В на АС.

Если медиана треугольника является его высотой, то этот треугольник - равнобедренный.

ВМ - высота и медиана ∆АВС, =>

=> ∆АВС - равнобедренный, основание АС =>

=> ВМ - также является биссектрисой ∆АВС, т.е.

уг. АВМ = уг. СВМ

\angle MBA = \angle MBC = \frac{1}{2} \angle ABC \\ \angle MBA = \angle MBC = 60 \div 2 = 30 {}^{o}

Так, как ∆АВС - равнобедренный, с основанием АС, то углы при основании - равны друг другу

уг. ВАС = уг. АСВ

и равны

угол ВАС = угол ВСА = 1/2 • (180 - угол АВС)

угол ВАС = угол ВСА = 1/2 • (180 - 60) = 60°

а значит ∆АВС - равносторонний.

угол MBC = 30°

угол ВCA = 60°

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Объясните своими словами, что такое медиана, биссектриса, вершина треугольника. какой треугольник называется равнобедренным?
Ваше имя (никнейм)*
Email*
Комментарий*