Рисунок к заданию во вложении
По рисунку,
Дано:
флагшток, тросс и расстояние от точки основания флагштока до места крепления троса на земле, составляют прямоугольный треугольник, где:
флагшток (b) - катет
расстояние от основания до места крепления (а) - катет
тросс (с) - гипотенуза
флагшток, закрепленный вертикально, перпендикулярен земле угол, между а и b = 90°.
Найти: длину катета а.
Решение: по теореме Пифагора:
c²=a²+b²
a=√(c²-b²)
c=6.5 м
b=6.3 м
a=√(6.5²-6.3²) м
a=√2.56 м
a=1.6 м
ответ: расстояние от точки основания флагштока до места крепления троса на земле равно 1.6 м
Столбы ставят перпендикулярно земле, а, следовательно, они параллельны между собой. Таким образом, получим, что ситуация, описанная в задаче, представляет собой следующую задачу:
Дана прямоугольная трапеция АВСD, основания которой BC = 9м и AD = 15м, а боковая сторона СD = 16м. Найдем сторону АВ (см. рис.).
Проведем СМ ⊥ AD, тогда ВС = АМ и АВ = СМ.
Получим прямоугольный треугольник СМD, у которого гипотенуза СD = 16 м, МD = АD - АМ = АD - ВС = 15- 9 = 6 (м).
По теореме Пифагора СМ² = СD² - МD² = 16² - 6² = 256 - 36 = 220 =
, откуда СМ =
м.
Значит. и АВ =
м.
м
Поделитесь своими знаниями, ответьте на вопрос:
Знайдіть площу круга діаметр якого дорівнює 2 см