Вравнобедренном треугольнике угол при вершине равен 120, а высота, опущенная из этого угла равна 3.найдите длину отрезка соединяющего середины боковой стороны и основания.
Из условия следует,что углы при основании по 30. Отрезок не может соединять три точки,лежащих в разных плоскостях просто по его определению(в условии неточность). Отрезок,соединяющий середину боковой стороны(любой) и основания(они равны как средние линии треугольников с основаниями - боковыми сторонами). Средняя линия данный отрезок по обратной Теореме Фалеса(отношение на боковых сторонах сторон). Получаются два прямоугольных треугольника с углами по 30. Тогда по Теореме о катете,лежащем против угла в 30, боковые стороны по 3*2=6. Следовательно,длина искомого отрезка по определению(можно увидеть,достроив до параллелограмма) - 6\2=3.
Баранов955
07.11.2021
Ромб АВСD , по свойствам ромба: Стороны равны АВ=ВС=СD=DА = 6 см Противолежащие углы равны ∠В = ∠D = x° (острые углы) ∠A=∠C = 5x° (тупые углы) Сумма углов прилежащих к одной стороне равна 180°, следовательно: х + 5х = 180 6х = 180 х = 180 :6 х = 30° ⇒ ∠В=∠D = 30° ∠A=∠C = 5*30 = 150° Площадь ромба: 1) через сторону и угол : S=a²*sinα S= 6²* sin30°= 36 * ¹/₂ = ³⁶/₂ = 18 (см²) 2) через сторону и высоту : S=ah S=ah Проведем высоту АН (∠Н= 90°) ⇒Δ АНD - прямоугольный AD=6 см - гипотенуза АН, НD - катеты ∠D = 30° Катет, лежащий против угла в 30° равен половине гипотенузы АН = AD/2 ⇒ АН = 6/2 = 3 см S = 6 * 3 = 18 (см²)
ответ: S = 18 см².
aerendzhenova5
07.11.2021
Ромб АВСD , по свойствам ромба: Стороны равны АВ=ВС=СD=DА = 6 см Противолежащие углы равны ∠В = ∠D = x° (острые углы) ∠A=∠C = 5x° (тупые углы) Сумма углов прилежащих к одной стороне равна 180°, следовательно: х + 5х = 180 6х = 180 х = 180 :6 х = 30° ⇒ ∠В=∠D = 30° ∠A=∠C = 5*30 = 150° Площадь ромба: 1) через сторону и угол : S=a²*sinα S= 6²* sin30°= 36 * ¹/₂ = ³⁶/₂ = 18 (см²) 2) через сторону и высоту : S=ah S=ah Проведем высоту АН (∠Н= 90°) ⇒Δ АНD - прямоугольный AD=6 см - гипотенуза АН, НD - катеты ∠D = 30° Катет, лежащий против угла в 30° равен половине гипотенузы АН = AD/2 ⇒ АН = 6/2 = 3 см S = 6 * 3 = 18 (см²)
Отрезок не может соединять три точки,лежащих в разных плоскостях просто по его определению(в условии неточность).
Отрезок,соединяющий середину боковой стороны(любой) и основания(они равны как средние линии треугольников с основаниями - боковыми сторонами).
Средняя линия данный отрезок по обратной Теореме Фалеса(отношение на боковых сторонах сторон).
Получаются два прямоугольных треугольника с углами по 30.
Тогда по Теореме о катете,лежащем против угла в 30,
боковые стороны по 3*2=6.
Следовательно,длина искомого отрезка по определению(можно увидеть,достроив до параллелограмма) - 6\2=3.