bk4552018345
?>

Вравнобедренном треугольнике угол при вершине равен 120, а высота, опущенная из этого угла равна 3.найдите длину отрезка соединяющего середины боковой стороны и основания.

Геометрия

Ответы

servik78
Из условия следует,что углы при основании  по 30.
Отрезок не может соединять три точки,лежащих в разных плоскостях просто по его определению(в условии неточность).
Отрезок,соединяющий середину боковой стороны(любой) и основания(они равны как средние линии треугольников с основаниями - боковыми сторонами).
Средняя линия данный отрезок по обратной Теореме Фалеса(отношение на боковых сторонах сторон).
Получаются два прямоугольных треугольника с углами по 30.
Тогда по Теореме о катете,лежащем против угла в 30,
боковые стороны по 3*2=6.
Следовательно,длина искомого отрезка по определению(можно увидеть,достроив до параллелограмма) - 6\2=3.
Баранов955
Ромб АВСD , по свойствам ромба:
Стороны равны
АВ=ВС=СD=DА = 6 см
Противолежащие углы равны
∠В = ∠D = x°    (острые углы)  
∠A=∠C = 5x°     (тупые углы)
Сумма углов прилежащих к одной стороне равна 180°, следовательно:
х + 5х = 180
6х = 180
х = 180 :6
х = 30°  ⇒ ∠В=∠D = 30°
∠A=∠C =  5*30 = 150°
Площадь ромба:
1) через сторону и угол : S=a²*sinα
S= 6²* sin30°=  36 * ¹/₂  = ³⁶/₂ = 18 (см²)
2) через  сторону и высоту : S=ah
S=ah
Проведем высоту АН (∠Н= 90°) ⇒Δ АНD - прямоугольный
AD=6 см  - гипотенуза
АН, НD  - катеты
∠D = 30°
Катет, лежащий против угла в 30°  равен половине гипотенузы
 АН = AD/2   ⇒ АН = 6/2 = 3  см
S =  6 * 3 = 18 (см²)

ответ: S = 18 см².

Найдите площадь ромба со стороной 6 см,если тупой угол ромба больше в 5 раз
aerendzhenova5
Ромб АВСD , по свойствам ромба:
Стороны равны
АВ=ВС=СD=DА = 6 см
Противолежащие углы равны
∠В = ∠D = x°    (острые углы)  
∠A=∠C = 5x°     (тупые углы)
Сумма углов прилежащих к одной стороне равна 180°, следовательно:
х + 5х = 180
6х = 180
х = 180 :6
х = 30°  ⇒ ∠В=∠D = 30°
∠A=∠C =  5*30 = 150°
Площадь ромба:
1) через сторону и угол : S=a²*sinα
S= 6²* sin30°=  36 * ¹/₂  = ³⁶/₂ = 18 (см²)
2) через  сторону и высоту : S=ah
S=ah
Проведем высоту АН (∠Н= 90°) ⇒Δ АНD - прямоугольный
AD=6 см  - гипотенуза
АН, НD  - катеты
∠D = 30°
Катет, лежащий против угла в 30°  равен половине гипотенузы
 АН = AD/2   ⇒ АН = 6/2 = 3  см
S =  6 * 3 = 18 (см²)

ответ: S = 18 см².

Найдите площадь ромба со стороной 6 см,если тупой угол ромба больше в 5 раз

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вравнобедренном треугольнике угол при вершине равен 120, а высота, опущенная из этого угла равна 3.найдите длину отрезка соединяющего середины боковой стороны и основания.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

tokarevaiv
i7aster26
Yuliya Aleksandr686
ПаршинАндрей1928
borvalmok432
machkura
Kozloff-ra20146795
bar02
delfa-r6289
e-s-i-k
nsn-2012
Марина566
krisrespect2
Igorevich_Aleksandrovna1599
Кузнецов