Ye.Vadim
?>

Начертите прямоугольник авсd со сторонами 5 см и 4 см и проведите диагональ ас. измерьте, чему равна ас.

Геометрия

Ответы

ostapbender1111
Зачем измерять ? Можно найти диагональ по теореме пифагора, АС = \sqrt{5 ^{2} + 4^{2} } = √9 = 3
vallium8354

Объяснение:

ЗАДАЧА 6

ДАНО: ∆АВС прямоугольный, <С=90°, <А=60°, АС=4

НАЙТИ: АВ

РЕШЕНИЕ: сумма острых углов прямоугольного треугольника составляет 90°, поэтому <В=90–60=30°

Катет АС, лежащий напротив него равен половине гипотенузы, поэтому гипотенуза АВ=2×4=8

ОТВЕТ: АВ=8

ЗАДАЧА 7

ДАНО: ∆АВС - прямоугольный, <С=90°, АС=ВС, СД=6

НАЙТИ: АВ

Если АС=ВС, то этот треугольник равнобедренный, а высота СД, проведённая из вершины прямого угла также является медианой и биссектрисой, а медиана, проведённая из вершины прямого угла равна половине гипотенузы, поэтому СД=½АВ или АВ =2СД=2×6=12

ОТВЕТ: АВ=12

ЗАДАЧА 8

ДАНО: ∆ АВС - прямоугольный, <А:<В=2:1, АВ=14, <С=90°

НАЙТИ: АС

РЕШЕНИЕ: сумма острых углов прямоугольного треугольника составляет 90°. Обозначим пропорции 2:1 как 2х и х и составим уравнение:

2х+х=90

3х=90

х=90÷3=30°

Итак: угол В=30°, тогда угол А=2×30=60°

Так как АС лежит напротив угла 30°, то АС=½АВ=½×14=7

ОТВЕТ: АС=7

ЗАДАЧА 9

ДАНО: ∆АВС прямоугольный: <С=90°, АС=ВС=10, АМ=СМ, МР перпендикулярно АС.

НАЙТИ: МР

РЕШЕНИЕ: МР делит катет АС пополам, поэтому АМ=СМ=10÷2=5.

МР является средней линией ∆АВС и если МР перпендикулярно АС, тогда он будет параллелен ВС. По свойствам средней линии треугольника МР=½ВС=½×10=5.

Можно также использовать средней линии, так как она является средней линией в равнобедренном треугольнике, а наш треугольник АВС именно равнобедренный, то МР отсекает от ∆АВС треугольник АРМ подобный ∆АВС. Поэтому ∆АРМ также является равнобедренным, у которого катеты АМ=РМ=5

ЗАДАЧА 10

ДАНО: ∆АВС - прямоугольный, <С=90°, <А=30°, ВК - биссектриса <В=8

НАЙТИ: АС

Так как сумма острых углов прямоугольного треугольника составляет 90°, то <В в ∆АВС=90–30=60°. Поскольку ВК - биссектриса, то она делит <В пополам поэтому <СВК=<АВК=60÷2=30°

Рассмотрим ∆АВК. В нём <АВК=<А=30°, из чего следует что ∆АВК - равнобедренный, поэтому ВК=АК=8

Рассмотрим ∆СВК. Он прямоугольный, и ВС и СК - катеты, а ВК - гипотенуза. В нём <СВК=30°, а катет СК, лежащий напротив него равен половине гипотенузы ВК, поэтому СК=½×ВК=8÷2=4

Итак: АК=8, СК=4.

Тогда АС=СК+АК=4+8=12

ОТВЕТ: АС=12

Gstoremsk62
ГМТ, удалённых от заданной точки на заданное расстояние - это окружность с радиусом, равным заданному расстоянию.
Координаты точки Х находим совместным решением уравнений таких окружностей.
Поместим квадрат АВСД в прямоугольную систему координат точкой А в начало, стороной АД по оси Ох.
Точка А (0; 0), точка С (1; 1).
Уравнение окружности с центром в точке А:
х² + у² = 5.
Уравнение окружности с центром в точке С:
(х - 1)² + (у - 1)² = 7.

Решаем систему:
\left \{ {{x^2+y^2=5} \atop {(x-1)^2+(y-1)^2=7}} \right.
Раскроем скобки:
\left \{ {{x^2+y^2=5} \atop {x^2-2x+1+y^2-2y+1=7}} \right.
Подставим вместо х² + у² число 5 и получим:
-2х - 2у = 0 или у = - х.
Это говорит о том, что точка Х лежит на прямой у = -х.
Подставим это свойство в первое уравнение:
х² + (-х)² = 5,
2х² = 5,
х = +-√(5/2) ≈ +- 1,5811388. Тогда у = -+ 1,5811388.
Имеем две точки, где может находиться точка Х:
Х((-√(5/2)); √(5/2)) и Х₁((√(5/2)); -√(5/2)).
Имеем и 2 расстояния от точки Х до точки В.
Расстояние между точками. d = √((х2 - х1)² + (у2 - у1 )²).
BХ = 1,684554,
BХ1 = 3,026925.
На плоскости дан квадрат abcd со стороной 1 и точка х. известно что xa=корень из 5, xc= корень из 7.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Начертите прямоугольник авсd со сторонами 5 см и 4 см и проведите диагональ ас. измерьте, чему равна ас.
Ваше имя (никнейм)*
Email*
Комментарий*