Yeroshkina411
?>

Треугольник abc правильный, точка o- его центр. прямая om перпендикулярна плоскости abc доказать ma=mb=mc найти ma, если ab=6 см, mo=2 см

Геометрия

Ответы

MNA888
Рисунок: Пирамида, в основании треугольник, вершина пирамиды М, Мо перпендикуляр(высота пирамиды!)АМ-боковое ребро!
Проведем в основании медиану АК, К на ВС!
тр-к АВС-правильный, Ак-медиана, высота биссектриса
тр-к АКС-прямоугольный
AK^2+KC^2=AC^2
AK^2+(AC/2)^2=AC^2
AK^2=6^2- 3^2=36-9=27;  AK=√27=3√3
AO=2/3 AK;  AO =2/3  *3√3=2√3
из АМС:  AM^2=AO^2+MO^2
               AM=√((2√3)^2 +2^2)=√(4*3 +4)=√(4(3+1))=2*2=4
af-rc7893
AB =BC ; ∠A= ∠C =α =45° , OH =d =3 см ; ∠SAO=∠SBO=∠SCO=β=30°.
---
V - ?

V =(1/3)Sосн *H =(1/3)S(ABC)*SO.

Если все боковые ребра (SA,SB ,SC) пирамиды образуют с плоскостью основания ABC равные углы  (в данном случае  β), то высота проходит через центр окружности  описанной около основания. 
HO - серединный перпендикуляр стороны AB: OH⊥AB,AH =BH =AB/2; ||OH =d ||.

∠B =180°-2α ; R =d/sin(∠B/2) = d/sin(90°-α)=d/cosα.
SO= R*tqβ =(d/cosα)*tqβ = (tqβ /cosα)* d .
AB =2*OH*tqα=2d*tqα. S(ABC) =(1/2)*AB²*sin∠B = (1/2)*4d²*tq²α*sin(180°-2α)= 
 2d²*tq²α*sin2α= 2d²*tq²α*2sinα*cosα= 4d²*sin³α/cosα.

V  =(1/3)S(ABC)*SO.
V=(1/3)*4d²*sin³α/cosα*(tqβ /cosα)*d =(4/3)*sinα*tq²α**tqβ*d³.

Eсли α =45°, β=30°,d=3 см ,то :
V=(4/3)*(√2/2)*(1²)*(1/√3)*3³=6√6. 
re22no22
раз площади ∆ADC и ∆CDB относятся как 1 :3, то 
отрезки AD и DB тоже относятся как 1 :3 (так как у этих треугольников одна высота)
AD/DB = 1/3
∆ACD подобен ∆CDB (высота в прямоугольном треугольнике, проведенная к гипотенузе делит треугольник на два подобных)
<A = <DCB (сходственные углы подобных треугольников)
обозначим СВ как х
тогда
tgA = CD/AD = x/1
tgDCB = DB/CD = 3/x
раз углы равны, то
tgA = tgDCB
x/1 = 3/x
x^2 = 3
x = √3
tgA = x/1 = √3

<A = arctg(tgA) = 60 ° 
<B = 180 - 90 - <A = 30°
ну а <C у нас прямой по условию

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Треугольник abc правильный, точка o- его центр. прямая om перпендикулярна плоскости abc доказать ma=mb=mc найти ma, если ab=6 см, mo=2 см
Ваше имя (никнейм)*
Email*
Комментарий*